Skip to main content

The Mammalian Neural Circadian System: From Molecules to Behaviour

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

Circadian rhythms pervade all aspects of mammalian physiology and behaviour, providing a near 24 h temporal architecture for all major brain and body systems. Mammalian chronobiology research has focused on nocturnal laboratory rodent models, and this has yielded valuable insight into the neural basis of circadian timekeeping. This has identified the suprachiasmatic nuclei (SCN) as the dominant circadian pacemaker and characterised its neurophysiology, neurochemistry, and potential mechanisms of behavioural control. However, nocturnality is only one of four possible temporal niches, and understanding of the neural circadian system in diurnal, crepuscular, and cathemeral mammalian species is very much in its infancy. In this chapter, we review the fundamental properties of the neural circadian system in nocturnal rodents and then compare this with what is known about neural timekeeping in diurnal species. Through this, we identify gaps in our knowledge and key problems to investigate in order to gain a more complete understanding of circadian control of behaviour and physiology, particularly with regard to temporal niche preference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    Article  CAS  PubMed  Google Scholar 

  2. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moore RY (2013) The suprachiasmatic nucleus and the circadian timing system. Prog Mol Biol Transl Sci 119:1–28

    Article  PubMed  Google Scholar 

  4. van den Pol AN (1991) The suprachiasmatic nucleus: morphological and cytochemical substrates for cellular interaction. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 17–50

    Google Scholar 

  5. Schwartz WJ (1991) SCN metabolic activity in vivo. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 144–156

    Google Scholar 

  6. Groos G, Hendriks J (1982) Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett 34:283–288

    Google Scholar 

  7. Inouye ST, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 76:5962–5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    Article  CAS  PubMed  Google Scholar 

  9. Brown TM, Piggins HD (2007) Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 82:229–255

    Article  CAS  PubMed  Google Scholar 

  10. Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102

    Article  CAS  PubMed  Google Scholar 

  11. Hughes AT, Piggins HD (2012) Feedback actions of locomotor activity to the circadian clock. Prog Brain Res 199:305–336

    Article  PubMed  Google Scholar 

  12. Mrosovsky N (1996) Locomotor activity and non-photic influences on circadian clocks. Biol Rev Camb Philos Soc 71:343–372

    Article  CAS  PubMed  Google Scholar 

  13. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ebling FJ (1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol 50:109–132

    Article  CAS  PubMed  Google Scholar 

  15. Hannibal J (2002) Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res 309:73–88

    Article  CAS  PubMed  Google Scholar 

  16. Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21:705–727

    Article  CAS  PubMed  Google Scholar 

  17. Albers HE, Ferris CF (1984) Neuropeptide Y: role in light-dark cycle entrainment of hamster circadian rhythms. Neurosci Lett 50:163–168

    Article  CAS  PubMed  Google Scholar 

  18. Morin LP (2013) Neuroanatomy of the extended circadian rhythm system. Exp Neurol 243:4–20

    Article  PubMed  Google Scholar 

  19. Marchant EG, Watson NV, Mistlberger RE (1997) Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules. J Neurosci 17:7974–7987

    CAS  PubMed  Google Scholar 

  20. Belle MD, Hughes AT, Bechtold DA, Cunningham P, Pierucci M, Burdakov D, Piggins HD (2014) Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J Neurosci 34:3607–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34:349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  23. Preitner N, Damiola F, Molina LL, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERB alpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  24. Goriki A, Hatanaka F, Myung J, Kim JK, Yoritaka T, Tanoue S, Abe T, Kiyonari H, Fujimoto K, Kato Y, Todo T, Matsubara A, Forger D, Takumi T (2014) A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol 12, e1001839

    Article  PubMed  PubMed Central  Google Scholar 

  25. Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sladek M, Semikhodskii AS, Glossop NR, Piggins HD, Chesham JE, Bechtold DA, Yoo SH, Takahashi JS, Virshup DM, Boot-Handford RP, Hastings MH, Loudon AS (2008) Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS (2007) Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Godinho SI, Maywood ES, Shaw L, Tucci V, Barnard AR, Busino L, Pagano M, Kendall R, Quwailid MM, Romero MR, O’Neill J, Chesham JE, Brooker D, Lalanne Z, Hastings MH, Nolan PM (2007) The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316:897–900

    Article  CAS  PubMed  Google Scholar 

  28. Guilding C, Scott F, Bechtold DA, Brown TM, Wegner S, Piggins HD (2013) Suppressed cellular oscillations in after-hours mutant mice are associated with enhanced circadian phase-resetting. J Physiol 591:1063–1080

    Article  CAS  PubMed  Google Scholar 

  29. Rey G, Reddy AB (2015) Interplay between cellular redox oscillations and circadian clocks. Diabetes Obes Metab 17(Suppl 1):55–64

    Article  CAS  PubMed  Google Scholar 

  30. Yan L, Karatsoreos I, Lesauter J, Welsh DK, Kay S, Foley D, Silver R (2007) Exploring spatiotemporal organization of SCN circuits. Cold Spring Harb Symp Quant Biol 72:527–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moore RY, Silver R (1998) Suprachiasmatic nucleus organization. Chronobiol Int 15:475–487

    Article  CAS  PubMed  Google Scholar 

  32. Piggins HD, Cutler DJ (2003) The roles of vasoactive intestinal polypeptide in the mammalian circadian clock. J Endocrinol 177:7–15

    Article  CAS  PubMed  Google Scholar 

  33. Vosko AM, Schroeder A, Loh DH, Colwell CS (2007) Vasoactive intestinal peptide and the mammalian circadian system. Gen Comp Endocrinol 152:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–483

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508

    Article  CAS  PubMed  Google Scholar 

  36. Hughes AT, Piggins HD (2008) Behavioral responses of Vipr2−/− mice to light. J Biol Rhythms 23:211–219

    Google Scholar 

  37. Brown TM, Hughes AT, Piggins HD (2005) Gastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling. J Neurosci 25:11155–11164

    Article  CAS  PubMed  Google Scholar 

  38. Maywood ES, Chesham JE, O’Brien JA, Hastings MH (2011) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci U S A 108:14306–14311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Piggins HD, Antle MC, Rusak B (1995) Neuropeptides phase-shift the mammalian circadian pacemaker. J Neurosci 15:5612–5622

    CAS  PubMed  Google Scholar 

  40. Ingram CD, Ciobanu R, Coculescu IL, Tanasescu R, Coculescu M, Mihai R (1998) Vasopressin neurotransmission and the control of circadian rhythms in the suprachiasmatic nucleus. Prog Brain Res 119:351–364

    Article  CAS  PubMed  Google Scholar 

  41. Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, Fustin JM, Yamazaki F, Mizuguchi N, Zhang J, Dong X, Tsujimoto G, Okuno Y, Doi M, Okamura H (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342:85–90

    Article  CAS  PubMed  Google Scholar 

  42. Li JD, Hu WP, Zhou QY (2012) The circadian output signals from the suprachiasmatic nuclei. Neurobiol Circadian Timing 199:119–127

    Article  CAS  Google Scholar 

  43. Sakhi K, Wegner S, Belle MD, Howarth M, Delagrange P, Brown TM, Piggins HD (2014) Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. J Physiol 592:5025–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515

    Article  CAS  PubMed  Google Scholar 

  45. Kraves S, Weitz CJ (2006) A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat Neurosci 9:212–219

    Article  CAS  PubMed  Google Scholar 

  46. Smale L, Lee T, Nunez AA (2003) Mammalian diurnality: some facts and gaps. J Biol Rhythm 18:356–366

    Article  Google Scholar 

  47. Hagenauer MH, Lee TM (2008) Circadian organization of the diurnal Caviomorph rodent, Octodon degus. Biol Rhythm Res 39:269–289

    Google Scholar 

  48. Smale L, Nunez AA, Schwartz MD (2008) Rhythms in a diurnal brain. Biol Rhythm Res 39:305–318

    Article  Google Scholar 

  49. Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H (2012) In search of a temporal niche: environmental factors. Neurobiology of Circadian Timing 199:281–304

    Article  Google Scholar 

  50. Mammen AP, Jagota A (2011) Immunocytochemical evidence for different patterns in daily rhythms of VIP and AVP peptides in the suprachiasmatic nucleus of diurnal Funambulus palmarum. Brain Res 1373:39–47

    Google Scholar 

  51. Novak CM, Ehlen JC, Albers HE (2008) Photic and nonphotic inputs to the diurnal circadian clock. Biol Rhythm Res 39:291–304

    Article  Google Scholar 

  52. Jiao YY, Lee TM, Rusak B (1999) Photic responses of suprachiasmatic area neurons in diurnal degus (Octodon degus) and nocturnal rats (Rattus norvegicus). Brain Res 817:93–103

    Google Scholar 

  53. Meijer JH, Rusak B, Harrington ME (1989) Photically responsive neurons in the hypothalamus of a diurnal ground squirrel. Brain Res 501:315–323

    Article  CAS  PubMed  Google Scholar 

  54. Jiao YY, Rusak B (2003) Electrophysiology of optic nerve input to suprachiasmatic nucleus neurons in rats and degus. Brain Res 960:142–151

    Article  CAS  PubMed  Google Scholar 

  55. Jewett ME, Rimmer DW, Duffy JF, Klerman EB, Kronauer RE, Czeisler CA (1997) Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. Am J Physiol 273:R1800–R1809

    CAS  PubMed  Google Scholar 

  56. Krajnak K, Dickenson L, Lee TM (1997) The induction of Fos-like proteins in the suprachiasmatic nuclei and intergeniculate leaflet by light pulses in degus (Octodon degus) and rats. J Biol Rhythms 12:401–412

    Google Scholar 

  57. Challet E (2007) Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148:5648–5655

    Article  CAS  PubMed  Google Scholar 

  58. Novak CM, Ehlen JC, Paul KN, Fukuhara C, Albers HE (2006) Light and GABA)(A) receptor activation alter period mRNA levels in the SCN of diurnal Nile grass rats. Eur J Neurosci 24:2843–2852

    Article  PubMed  Google Scholar 

  59. Cuesta M, Mendoza J, Clesse D, Pevet P, Challet E (2008) Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp Neurol 210:501–513

    Article  CAS  PubMed  Google Scholar 

  60. Nixon JP, Smale L (2007) A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents. Behav Brain Funct 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  61. Goel N, Lee TM, Smale L (1999) Suprachiasmatic nucleus and intergeniculate leaflet in the diurnal rodent Octodon degus: retinal projections and immunocytochemical characterization. Neuroscience 92:1491–1509

    Google Scholar 

  62. Smale L, Boverhof J (1999) The suprachiasmatic nucleus and intergeniculate leaflet of Arvicanthis niloticus, a diurnal murid rodent from East Africa. J Comp Neurol 403:190–208

    Google Scholar 

  63. Rocha VA, Frazao R, Campos LM, Mello P, Donato J Jr, Cruz-Rizzolo RJ, Nogueira MI, Pinato L (2014) Intrinsic organization of the suprachiasmatic nucleus in the capuchin monkey. Brain Res 1543:65–72

    Article  CAS  PubMed  Google Scholar 

  64. Sato T, Kawamura H (1984) Circadian rhythms in multiple unit activity inside and outside the suprachiasmatic nucleus in the diurnal chipmunk (Eutamias sibiricus). Neurosci Res 1:45–52

    Google Scholar 

  65. Vosko AM, Hagenauer MH, Hummer DL, Lee TM (2009) Period gene expression in the diurnal degu (Octodon degus) differs from the nocturnal laboratory rat (Rattus norvegicus). Am J Physiol Regul Integr Comp Physiol 296:R353–R361

    Google Scholar 

  66. Ramanathan C, Stowie A, Smale L, Nunez AA (2010) Phase preference for the display of activity is associated with the phase of extra-suprachiasmatic nucleus oscillators within and between species. Neuroscience 170:758–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Otalora BB, Hagenauer MH, Rol MA, Madrid JA, Lee TM (2013) Period gene expression in the brain of a dual-phasing rodent, the Octodon degus. J Biol Rhythms 28:249–261

    Google Scholar 

  68. Chakir I, Dumont S, Pevet P, Ouarour A, Challet E, Vuillez P (2015) The circadian gene clock oscillates in the suprachiasmatic nuclei of the diurnal rodent Barbary striped grass mouse, Lemniscomys barbarus: a general feature of diurnality? Brain Res 1594:165–172

    Google Scholar 

  69. Mrosovsky N, Edelstein K, Hastings MH, Maywood ES (2001) Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J Biol Rhythms 16:471–478

    Google Scholar 

  70. Caldelas I, Poirel VJ, Sicard B, Pevet P, Challet E (2003) Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience 116:583–591

    Google Scholar 

  71. Doyle SE, Castrucci AM, McCall M, Provencio I, Menaker M (2006) Nonvisual light responses in the Rpe65 knockout mouse: rod loss restores sensitivity to the melanopsin system. Proc Natl Acad Sci U S A 103:10432–10437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oster H, Avivi A, Joel A, Albrecht U, Nevo E (2002) A switch from diurnal to nocturnal activity in S.ehrenbergi is accompanied by an uncoupling of light input and the circadian clock. Curr Biol 12:1919–1922

    Google Scholar 

  73. Lambert CM, Machida KK, Smale L, Nunez AA, Weaver DR (2005) Analysis of the prokineticin 2 system in a diurnal rodent, the unstriped Nile grass rat (Arvicanthis niloticus). J Biol Rhythms 20:206–218

    Google Scholar 

  74. Tournier BB, Dardente H, Vuillez P, Pevet P, Challet E (2007) Expression of Tgfalpha in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Neuroscience 145:1138–1143

    Article  CAS  PubMed  Google Scholar 

  75. Dardente H, Menet JS, Challet E, Tournier BB, Pevet P, Masson-Pevet M (2004) Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Brain Res Mol Brain Res 124:143–151

    Article  CAS  PubMed  Google Scholar 

  76. Kalsbeek A, Verhagen LA, Schalij I, Foppen E, Saboureau M, Bothorel B, Buijs RM, Pevet P (2008) Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. Eur J Neurosci 27:818–827

    Article  PubMed  Google Scholar 

  77. Lee IT, Chang AS, Manandhar M, Shan Y, Fan J, Izumo M, Ikeda Y, Motoike T, Dixon S, Seinfeld JE, Takahashi JS, Yanagisawa M (2015) Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85:1086–1102

    Article  CAS  PubMed  Google Scholar 

  78. Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, Sakurai T (2015) Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85:1103–1116

    Article  CAS  PubMed  Google Scholar 

  79. Doi M, Murai I, Kunisue S, Setsu G, Uchio N, Tanaka R, Kobayashi S, Shimatani H, Hayashi H, Chao HW, Nakagawa Y, Takahashi Y, Hotta Y, Yasunaga J, Matsuoka M, Hastings MH, Kiyonari H, Okamura H (2016) Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. Nat Commun 7:10583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guzman-Ruiz MA, Ramirez-Corona A, Guerrero-Vargas NN, Sabath E, Ramirez-Plascencia OD, Fuentes-Romero R, Leon-Mercado LA, Basualdo SM, Escobar C, Buijs RM (2015) Role of the suprachiasmatic and arcuate nuclei in diurnal temperature regulation in the rat. J Neurosci 35:15419–15429

    Article  CAS  PubMed  Google Scholar 

  81. Chiesa JJ, Aguzzi J, Garcia JA, Sarda F, de la Iglesia HO (2010) Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J Biol Rhythms 25:277–287

    Google Scholar 

Download references

Funding

BBO is funded by Fundacion Seneca 19701/PD/14 and HDP by project grants from the Biotechnology and Biological Sciences Research Council (BBSRC) (BB/M02329X and BB/L007665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh D. Piggins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Bano-Otalora, B., Piggins, H.D. (2017). The Mammalian Neural Circadian System: From Molecules to Behaviour. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_12

Download citation

Publish with us

Policies and ethics