Skip to main content

The Reptilian Clock System: Circadian Clock, Extraretinal Photoreception, and Clock-Dependent Celestial Compass Orientation Mechanisms in Reptiles

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

Among vertebrates, reptiles are one of the most interesting taxa to understand the evolution of the circadian system to different ecological niches. Here we summarize the current knowledge about the circadian system of reptiles. In detail, paragraph 3 analyzes studies concerning the existence of peripheral and central circadian oscillators in reptiles, with complementary data gathered using molecular, physiological, and behavioral approaches, particularly, the role of SCN and the reactions of both central and peripheral oscillators to drastic changes in ambient temperatures. In paragraph 4, as it is peculiar to other nonmammalian vertebrates, also lizards, behavioral and hormonal rhythms (particularly melatonin) can be entrained by extraretinal and deep brain photoreceptors, whose position in the brain seems to vary somewhat in different lizard species. In paragraph 5, the seasonal changes in circadian organization are analyzed in fine detail in the ruin lizard Podarcis sicula, a species in which most research on seasonality has be done. Paragraph 6 reports some data on the role of ambient light irradiance in the circadian organization. Paragraph 7 deals with problems of orientation in space, with particular interest in celestial compass mechanisms which need a functional circadian clock to work properly. In this context recent results are reported on the functioning of both sun and sky polarization compasses and the pivotal role played by the parietal eye in those mechanisms of orientation. Paragraph 8 reports conclusion and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:16ā€“54

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. FoĆ  A, Bertolucci C (2001) Temperature cycles induce a bimodal activity pattern in ruin lizards: masking or clock-controlled event? A seasonal problem. J Biol Rhythms 16:574ā€“584

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Stephan FK (2002) The ā€œotherā€ circadian system: food as a Zeitgeber. J Biol Rhythms 17:284ā€“292

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Dardente H, Cermakian N (2007) Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 24:195ā€“213

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15:R271ā€“R277

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Pegoraro M, Tauber E (2011) Animal clocks: a multitude of molecular mechanisms for circadian timekeeping. Wiley Interdiscip Rev 2:312ā€“320

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Cahill GM (2002) Clock mechanisms in zebrafish. Cell Tissue Res 309:27ā€“34

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647ā€“676

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Magnone MC, Jacobmeier B, Bertolucci C, FoĆ  A, Albrecht U (2005) Circadian expression of the clock gene Per2 is altered in the ruin lizard (Podarcis sicula) when temperature changes. Brain Res Mol Brain Res 133:281ā€“285

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. Vallone D, Frigato E, Vernesi C, FoĆ  A, Foulkes NS, Bertolucci C (2007) Hypothermia modulates circadian clock gene expression in lizard peripheral tissues. Am J Physiol Regul Integ Comp Physiol 292(1):R160ā€“R166

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Menaker M, Murphy ZC, Sellix MT (2013) Central control of peripheral circadian oscillators. Curr Opin Neurobiol 23:741ā€“746

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Saper CB, Sehgal A (2013) New perspectives on circadian rhythms and sleep. Curr Opin Neurobiol 23:721ā€“723

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Whitmore D, Foulkes NS, StrƤhle U, Sassone-Corsi P (1998) Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci 1:701ā€“707

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339ā€“5346

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Malatesta M, Frigato E, Baldelli B, Battistelli S, FoĆ  A, Bertolucci C (2007) Influence of temperature on the liver circadian clock in the ruin lizard Podarcis sicula. Microsc Res Tech 70:578ā€“584

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Janik DS, Pickard GE, Menaker M (1990) Circadian locomotor rhythms in the desert iguana. II. Effects of electrolytic lesions to the hypothalamus. J Comp Physiol 166:811ā€“816

    CASĀ  Google ScholarĀ 

  17. Minutini L, Innocenti A, Bertolucci C, FoĆ  A (1994) Electrolytic lesions to the optic chiasm affect circadian locomotor rhythms in lizards. Neuroreport 5(4):525ā€“527

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Janik D, Cassone VM, Pickard GE, Menaker M (1994) Retinohypothalamic projections and immunocytochemical analysis of the suprachiasmatic region of the desert iguana Dipsosaurus dorsalis. Cell Tissue Res 275:399ā€“406

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Magnone MC, Bertolucci C, Piazza F, FoĆ  A (2003) Daily and circadian rhythms of neurotransmitters and related compounds in the hypothalamic suprachiasmatic nuclei of a diurnal vertebrate. Brain Res 973(1):115ā€“121

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Bertolucci C, Sovrano VA, Magnone MC, FoĆ  A (2000) Role of suprachiasmatic nuclei in circadian and light-entrained behavioral rhythms of lizards. Am J Physiol Regul Integr Comp Physiol 279(6):R2121ā€“R2131

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Bertolucci C, FoĆ  A (1998) Seasonality and role of SCN in entrainment of lizard circadian rhythms to daily melatonin injections. Am J Physiol 274:R1004ā€“R1014

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Tosini G, Menaker M (1998) Multioscillatory circadian organization in a vertebrate, Iguana iguana. J Neurosci 18(3):1105ā€“1114

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Hoffmann K (1968) Synchronisation der circadianen AktivitƤtsperiodik von Eidechsen durch Temperaturzyclen verschiedener Amplitude. Z Vgl Physiol 58:225ā€“228

    ArticleĀ  Google ScholarĀ 

  24. Underwood H, Menaker M (1976) Extraretinal photoreception in lizards. Photophysiology 23:227ā€“243

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Underwood H (1981) Circadian organization in the lizard, Sceloporus occidentalis: the effects of blinding, pinealectomy and melatonin. J Comp Physiol 141:537ā€“547

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Foa` A (1991) The role of the pineal and the retinae in the expression of circadian locomotor rhythmicity in the ruin lizard, Podarcis sicula. J Comp Physiol A 169:201ā€“207

    ArticleĀ  Google ScholarĀ 

  27. Hoffmann K (1970) Zur Synehronisation biologischer Rhythmen. Verhandlungen der Deutschen Zoologischen Gesellschaft: 266ā€“273

    Google ScholarĀ 

  28. Underwood H, Menaker M (1970) Extraretinal light perception: entrainment of the biological clock controlling lizard locomotor activity. Science 170:190ā€“193

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Underwood H (1973) Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizards. J Comp Physiol 83:187ā€“222

    ArticleĀ  Google ScholarĀ 

  30. Underwood H (1985) Circadian rhythms in lizards: phase response curve for melatonin. J Pineal Res 3:187ā€“196

    ArticleĀ  Google ScholarĀ 

  31. Foster RG, Garcia-Fernandez JM, Provencio I, DeGrip WJ (1993) Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis. J Comp Physiol A 172:33ā€“45

    ArticleĀ  Google ScholarĀ 

  32. Grace MS, Alones V, Menaker M, Foster RG (1996) Light perception in the vertebrate brain: an ultrastructural analysis of opsin- and vasoactive intestinal polypeptide-immunoreactive neurons in iguanid lizards. J Comp Neurol 367:575ā€“594

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Yoshikawa T, Okano T, Kokame K, Hisatomi O, Tokunaga F, Oishi T, Fukada Y (2001) Immunohistochemical localization of opsins and alpha-subunit of transducin in the pineal complex and deep brain of the Japanese grass lizard, Takydromus tachydromoides. Zoolog Sci 18:325ā€“330

    ArticleĀ  Google ScholarĀ 

  34. Pasqualetti M, Bertolucci C, Ori M, Innocenti A, Magnone MC, De Grip WJ, Nardi I, FoĆ  A (2003) Identification of circadian brain photoreceptors mediating photic entrainment of behavioural rhythms in lizards. Eur J Neurosci 18:364ā€“372

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  35. Bertolucci C, FoĆ  A (2004) Extraocular photoreception and circadian entrainment in nonmammalian vertebrates. Chronobiol Int 21:501ā€“519, Erratum in: Chronobiology International. 2005; 22: 175

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  36. Underwood H, Calaban M (1987) Pineal melatonin rhythms in the lizard Anolis carolinensis: response to light and temperature cycles. J Biol Rhythms 2:179ā€“193

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Firth BT, Belan I, Kennaway DJ, Moyer RW (1999) Thermocyclic entrainment of lizard blood plasma melatonin rhythms in constant and cyclic photic environments. Am J Physiol 277:R1620ā€“R1626

    CASĀ  PubMedĀ  Google ScholarĀ 

  38. FoĆ” A, Bertolucci C (2003) Toward a seasonal model of the circadian system: the case of Ruin lizards. Front Biosci 8:236ā€“242

    ArticleĀ  Google ScholarĀ 

  39. FoĆ  A, BrandstƤtter R, Bertolucci C (2006) The circadian system of ruin lizards: a seasonally changing neuroendocrine loop? Chronobiol Int 23:317ā€“327

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  40. Foa` A, Minutini L, Innocenti A (1992) Melatonin: a coupling device between oscillators in the circadian system of the ruin lizard Podarcis sicula. Comp Biochem Physiol 103A:719ā€“723

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Tosini G, FoĆ  A, Avery RA (1992) Body temperature and exposure to sunshine of ruin lizards Podarcis sicula in central Italy. Amphibia Reptilia 13:169ā€“175

    ArticleĀ  Google ScholarĀ 

  42. Foa` A, Monteforti G, Minutini L, Innocenti A, Quaglieri C, Flamini M (1994) Seasonal changes of locomotor activity patterns in ruin lizards Podarcis sicula. I. Endogenous control by the circadian system. Behav Ecol Sociobiol 34:267ā€“274

    ArticleĀ  Google ScholarĀ 

  43. Innocenti A, Minutini L, Foa` A (1994) Seasonal changes of locomotor activity patterns in ruin lizards Podarcis sicula. II. Involvement of the pineal. Behav Ecol Sociobiol 35:27ā€“32

    ArticleĀ  Google ScholarĀ 

  44. Foa` A, Janik D, Minutini L (1992) Circadian rhythms of plasma melatonin in the ruin lizard Podarcis sicula: effects of pinealectomy. J Pineal Res 12:109ā€“113

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Innocenti A, Bertolucci C, Minutini L, Foa` A (1996) Seasonal variations of pineal involvement in the circadian organization of ruin lizards Podarcis sicula. J Exp Biol 199:1189ā€“1194

    CASĀ  PubMedĀ  Google ScholarĀ 

  46. FoĆ  A, Magnone C, Bertolucci C (2002) Circadian organization in ruin lizards: phase response curve for melatonin changes with season. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:141ā€“145

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  47. Bertolucci C, FoĆ  A, Vanā€™t Hof TJ (2002) Seasonal variations in circadian rhythms of plasma melatonin in ruin lizards. Horm Behav 41(4):414ā€“419

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Bertolucci C, Wagner G, FoĆ  A, Gwinner E, BrandstƤtter R (2003) Photoperiod affects amplitude but not duration of in vitro melatonin production in the ruin lizard (Podarcis sicula). J Biol Rhythms 18:63ā€“70

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Cassone VM, Menaker M (1984) Is the avian circadian system a neuroendocrine loop? J Exp Zool 232:539ā€“549

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Moore AF, Menaker M (2012) Photic resetting of the circadian clock is correlated with photic habitat in Anolis lizards. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198:375ā€“387

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Moore AF, Kawasaki M, Menaker M (2012) Photic induction of locomotor activity is correlated with photic habitat in Anolis lizards. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198:193ā€“201

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  52. Fleishman LJ, Bowman M, Saunders D, Miller WE, Rury MJ, Loew ER (1997) The visual ecology of Puerto Rican anoline lizards: habitat light and spectral sensitivity. J Comp Physiol A 181:446ā€“460

    ArticleĀ  Google ScholarĀ 

  53. Kramer G (1950) Weitere Analyse der Faktoren, welche die ZugaktivitƤit des gekƤifigten Vogels orientieren. Naturwissenschaften 37:377ā€“378

    ArticleĀ  Google ScholarĀ 

  54. Kramer G (1952) Experiments on bird orientation. Ibis 94:265

    ArticleĀ  Google ScholarĀ 

  55. Schmidt-Koenig K (1958) Der Einfluįŗž experimentell verӓinderter Zeiteinschӓitzung auf das HeimfindevermÓ§gen von Brieftauben. Naturwissenschaften 45:47

    ArticleĀ  Google ScholarĀ 

  56. Auburn JS, Douglas HT (1979) Polarized light perception and orientation in larval bullfrogs Rana cateseiana. Anim Behav 27:658ā€“668

    ArticleĀ  Google ScholarĀ 

  57. Ellis-Quinn BA, Simon CA (1991) Lizard homing behaviour: the role of the parietal eye during displacement and radio-tracking, and time-compensated celestial orientation in the lizard Sceloporus jarrovi. Behav Ecol Sociobiol 28:397ā€“407

    ArticleĀ  Google ScholarĀ 

  58. Freake MJ (2001) Homing behaviour in the sleepy lizard (Tiliqua rugosa): the role of visual cues and the parietal eye. Behav Ecol Sociobiol 50:563ā€“569

    Google ScholarĀ 

  59. Adler K, Phillips JB (1985) Orientation in a desert lizard (Uma notata): timecompensated compass movement and polarotaxis. J Comp Physiol 156:547ā€“552

    ArticleĀ  Google ScholarĀ 

  60. FoĆ  A, Basaglia F, Beltrami G, Carnacina M, Moretto E, Bertolucci C (2009) Orientation of lizards in a Morris water-maze: roles of the sun compass and the parietal eye. J Exp Biol 212:2918ā€“2924

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  61. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47ā€“60

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Dodt E (1973) The parietal eye (pineal and parietal organs) of lower vertebrates. In: Jung R (ed) Handbook of sensory physiology, vol VII/3B. Springer, Berlin, pp 113ā€“140

    Google ScholarĀ 

  63. Firth BT, Kennaway DJ (1987) Melatonin content of the pineal, parietal eye and blood plasma of the lizard, Trachydosaurus rugosus: effect of constant and fluctuating temperature. Brain Res 404:313ā€“318

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. Freake MJ (1999) Evidence for orientation using the e-vector direction of polarised light in the sleepy lizard Tiliqua rugosa. J Exp Biol 202:1159ā€“1166

    PubMedĀ  Google ScholarĀ 

  65. Brines ML, Gould JL (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96:69ā€“91

    Google ScholarĀ 

  66. von Frisch K (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tӓnzen der Bienen. Experientia 5:142ā€“148

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Hamasaki DI, Eder DJ (1977) Adaptive radiation of the pineal system. In: Crescittelli F (ed) Handbook of sensory physiology: the visual system in vertebrates, vol 7/5. Springer-Verlag, Berlin, pp 498ā€“548

    Google ScholarĀ 

  68. Beltrami G, Bertolucci C, Parretta A, Petrucci F, FoĆ  A (2010) A sky polarization compass in lizards: the central role of the parietal eye. J Exp Biol 213:2048ā€“2054

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Beltrami G, Parretta A, Petrucci F, Buttini P, Bertolucci C, FoĆ  A (2012) The lizard celestial compass detects linearly polarized light in the blue. J Exp Biol 215:3200ā€“3206

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  70. Maoret F, Beltrami G, Bertolucci C, FoĆ  A (2014) Celestial orientation with the sun not in view: lizards use a time-compensated sky polarization compass. J Biol Rhythms 29:144ā€“147

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  71. Brines ML, Gould JL (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96:69ā€“91

    Google ScholarĀ 

  72. Minutini L, Innocenti A, Bertolucci C, FoĆ  A (1995) Circadian organization in the ruin lizard Podarcis sicula: the role of the suprachiasmatic nuclei of the hypothalamus. J Comp Physiol A 176:281ā€“288

    ArticleĀ  Google ScholarĀ 

  73. Bertolucci C, Leorati M, Innocenti A, FoĆ  A (1999) Circannual variations of lizard circadian activity rhythms in constant darkness. Behav Ecol Sociobiol 46:200ā€“209

    ArticleĀ  Google ScholarĀ 

  74. Frigato E, Vallone D, Bertolucci C, Foulkes NS (2006) Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles. Naturwissenschaften 93:379ā€“385

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Wehner R (1989) The hymenopteran skylight compass: matched filtering and parallel coding. J Exp Biol 146:63ā€“85

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Bertolucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Bertolucci, C., Frigato, E., FoĆ , A. (2017). The Reptilian Clock System: Circadian Clock, Extraretinal Photoreception, and Clock-Dependent Celestial Compass Orientation Mechanisms in Reptiles. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_10

Download citation

Publish with us

Policies and ethics