Skip to main content

Origins: A Brief Account of the Ancestry of Circadian Biology

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

Who were the investigators and what was the path that enabled the launch of modern mechanistic research on circadian biology in the 1970s? Here we trace the origins of ideas from antiquity to the experimental study of the daily movements of leaves; on to the twentieth-century realization that circadian rhythms are widespread, endogenous, and innate; and finally to the appreciation that such rhythms could be utilized by organisms for the measurement of time. The conceptualization of the internal “clock” metaphor was key to the wave of mathematical, neurobiological, and molecular genetic advances that has transformed the field over the last 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bünning E (1977) Fifty years of research in the wake of Wilhelm Pfeffer. Annu Rev Plant Physiol 28:1–22

    Article  Google Scholar 

  2. Aschoff J (1990) Sources of thoughts: from temperature regulation to rhythm research. Chronobiol Int 7:179–186

    Article  CAS  PubMed  Google Scholar 

  3. Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:17–54

    Article  Google Scholar 

  4. Daan S (2010) A history of chronobiological concepts. In: Albrecht U (ed) Protein reviews, vol 12. Springer Verlag, New York, pp 1–35

    Google Scholar 

  5. Franklin B (1735) Poor Richard’s Almanack

    Google Scholar 

  6. Boswell J (1785) The journal of a tour to the Hebrides with Samuel Johnson, LL.D. (Entry of September 14, 1773)

    Google Scholar 

  7. Bruce E (January 26, 2011) Early to bed, early to rise [blog post]. Retrieved from https://idiomation.wordpress.com/2011/01/26/early-to-bed-early-to-rise/

  8. de Mairan JJO (1729) Observation botanique. Histoire de l’Academie Royale des Sciences. French Academie des Sciences, Paris, p. 35. Retrieved from https://www.bibnum.education.fr/sciencesdelavie/biologie/observation-botanique.

  9. Hill J (1757) The sleep of plants, and cause of motion in the sensitive plant, explain’d. In a letter to C. Linnaeus. Baldwin, London

    Google Scholar 

  10. Duhamel du Monceau H-L (1759) La Physique des Arbres, vol 2. Guerin & Delatour, Paris, p 159

    Google Scholar 

  11. Zinn JG (1759) Von dem Schlafe der Plfanzen. Hamburgisches Mag 22:40–50

    Google Scholar 

  12. de Candolle AP (1813) Théorie élémentaire de la botanique; ou, Exposition des principes de la classification naturelle et de l’art de décrire et d’étudier les végétaux. Déterville, Paris

    Google Scholar 

  13. de Candolle AP (1832) Du movement de plantes. In: Physiologie Végétale; ou, Exposition des forces et des fonctions vitals des végétaux. Vol 2, Livre IV, Chapitre VI. Paris: Béchet jeune, pp 853–62.

    Google Scholar 

  14. Sachs J (1863) Die vorübergehenden Starre-Zustände periodisch beweglicher und reizbarer Pflanzenorgane. II Die vorübergehende Dunkelstarre. Flora 30:469

    Google Scholar 

  15. Pfeffer W (1875) Die Periodischen Bewegungen der Blattorgane. Verlag Wilhelm Engelmann, Leipzig

    Book  Google Scholar 

  16. Darwin CR, Darwin F (1880) The power of movement in plants. John Murray, London

    Book  Google Scholar 

  17. Semon R (1905) Über die Erblichkeit der Tagesperiode. Biologisches Centralblatt 25:241–252

    Google Scholar 

  18. Pfeffer W (1907) Untersuchungen über die Entstehung der Schlafbewegungen der Blattorgane. Abh Math Phys Klasse Kg Sächsischen Ges Wiss 30:257–472

    Google Scholar 

  19. Pfeffer W (1915) Beiträge zur Kenntnis der Entstehung der Schlafbewegungen. Abh Math Phys Klasse Kg Sächsischen Ges Wiss 34:1–154

    Google Scholar 

  20. Kleinhoonte A (1928) De door het licht geregelde autonome bewegingen der Canavalia-bladeren. Meinema, Delft, 142 pp

    Google Scholar 

  21. Halberg F, Halberg E, Barnum CP, Bitner JJ (1959) Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine. In: Withrow RB (ed) Photoperiodism and related phenomena in plant and animals. AAAS, Washington, DC, pp 803–878

    Google Scholar 

  22. Bünning E, Stern K (1930) Über die tagesperiodischen Bewegungen der Primärblätter von Phaseolus multiflorus. II. Die Bewegungen bei Thermo-konstanz. Ber Dtsch Botanischen Ges 48:227–252

    Google Scholar 

  23. Bünning E (1932) Über die Erblichket der Tagesperiodizitat bei den Phaseolus-Blättern. Jahrb Wiss Bot 77:283–320

    Google Scholar 

  24. Bünning E (1935) Zur Kenntnis der erblichen Tagesperiodizitat bei den Primarblattern von Phaseolus multiflorus. Jahrb Wiss Bot 81:411–418

    Google Scholar 

  25. Kalmus H (1935) Periodizität und Autochronie (= Ideochronie) als zeitregelnde Eigenschaften der Organismen. Biol Gen 11:93–114

    Google Scholar 

  26. Bünning E (1935) Zur Kenntnis der endonomen Tagesrhythmik bei Insekten und bei Pflanzen. Ber Dtsch Botanischen Ges 53:594–623

    Google Scholar 

  27. Richter CP (1922) A behavioristic study of the activity of the rat. Comp Psychol Monogr 1:1–54

    Google Scholar 

  28. Richter CP, Wang GH (1926) New apparatus for measuring the spontaneous motility of animals. J Lab Clin Med 12:289–292

    Google Scholar 

  29. Stewart CC (1898) Variations in daily activity produced by alcohol and by changes in barometric pressure and diet, with a description of recording methods. Am J Physiol 1:40–56

    Google Scholar 

  30. Simpson S, Galbraith JJ (1906) Observations on the normal temperature of the monkey and its diurnal variation, and on the effect of changes in the daily routine on this variation. Trans R Soc Edinb 45:65–104

    Article  Google Scholar 

  31. Kleitman N (1963) Sleep and wakefulness. University of Chicago Press, Chicago

    Google Scholar 

  32. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    Article  CAS  PubMed  Google Scholar 

  33. Aschoff J (1947) Einige allgemeine Gesetzmässigkeiten physikalischer Temperaturregulation. Pflugers Arch 249:125–136

    Article  CAS  Google Scholar 

  34. Aschoff J, Wever R (1962) Spontanperiodik des Menschen bei Ausschluss aller Zeitgeber. Naturwissenschaften 49:337–342

    Article  Google Scholar 

  35. Aschoff J (1965) Circadian rhythms in man. Science 148:1427–1432

    Article  CAS  PubMed  Google Scholar 

  36. Virey J-J (1814) Ephémérides de al vie humaine; ou, Recherches sur la révolution journalière et la périodicité de ses phénomènes dans la santé et les maladies. Thèse Fac Méd, Sorbonne, Paris

    Google Scholar 

  37. Bünning E (1936) Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Dtsch Botanischen Ges 54:590–607

    Google Scholar 

  38. Johnson MS (1939) Effect of continuous light on periodic spontaneous activity of white-footed mice (Peromyscus). J Exp Zool 82:315–328

    Article  Google Scholar 

  39. Hastings JW, Sweeney BM (1958) A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol Bull 115:440–458

    Article  Google Scholar 

  40. DeCoursey PJ (1960) Daily light sensitivity rhythm in a rodent. Science 131:33–35

    Article  CAS  Google Scholar 

  41. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129

    Article  Google Scholar 

  42. Kalmus H (1940) Diurnal rhythms in the axolotl larva and in Drosophila. Nature 145:72–73

    Article  Google Scholar 

  43. Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. In: Chovnick A, editors. Biological clocks. Cold Spring Harb Symp Quant Biol 25:159–84.

    Google Scholar 

  44. Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci U S A 40:1018–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kramer G (1950) Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften 37:377–378

    Article  Google Scholar 

  46. Hoffman K (1965) Clock-mechanisms in celestial orientation of animals. In: Aschoff J (ed) Circadian clocks. North-Holland, Amsterdam, pp 426–441

    Google Scholar 

  47. Lorenz K (1959) Gustav Kramer†. J Ornithol 100:265–268

    Article  Google Scholar 

  48. Frisch K v (1950) Die Sonne als Kompaß im Leben der Bienen. Experientia 6:210–221

    Article  Google Scholar 

  49. Beling I (1929) Über das Zeitgedächtnis der Bienen. Z Vergleichende Physiol 9:259–338

    Article  Google Scholar 

  50. Chovnik A (ed) (1960) Biological clocks. Cold Spring Harbor symposia on quantitative biology, vol 25. The Biological Laboratory, Cold Spring Harbor

    Google Scholar 

  51. Hamner KC, Finn JC Jr, Sirohi GS, Hoshizaki T, Carpenter BH (1962) The biological clock at the South Pole. Nature 195:476–480

    Article  Google Scholar 

  52. Sulzman FM, Ellman D, Fuller CA, Moore-Ede MC, Wassmer G (1984) Neurospora circadian rhythms in space: a reexamination of the endogenous-exogenous question. Science 225:232–234

    Article  CAS  PubMed  Google Scholar 

  53. Winfree AT (1970) Integrated view of the resetting of a circadian clock. J Theor Biol 28:327–374

    Article  CAS  PubMed  Google Scholar 

  54. Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, New York, pp 566–585

    Book  Google Scholar 

  55. Pittendrigh CS, Bruce VG (1957) An oscillator model for biological clocks. In: Rudnick D (ed) Rhythmic and synthetic processes in growth. Princeton University Press, Princeton, pp 75–109

    Google Scholar 

  56. Eskin A (1979) Identification and physiology of circadian pacemakers. Fed Proc Fed Am Soc Exp Biol 38:2570–2572

    CAS  Google Scholar 

  57. Truman JW, Riddiford LM (1970) Neuroendocrine control of ecdysis in silkmoths. Science 167:1624–1626

    Article  CAS  PubMed  Google Scholar 

  58. Handler AM, Konopka RJ (1979) Transplantation of a circadian pacemaker in Drosophila. Nature 279:236–238

    Article  CAS  PubMed  Google Scholar 

  59. Page TL (1982) Transplantation of the cockroach circadian pacemaker. Science 216:73–75

    Article  CAS  PubMed  Google Scholar 

  60. Zimmerman NH, Menaker M (1979) The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc Natl Acad Sci U S A 76:999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    Article  CAS  PubMed  Google Scholar 

  63. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  CAS  PubMed  Google Scholar 

  64. Andrews RV, Folk GE Jr (1964) Circadian metabolic patterns in cultured hamster adrenal glands. Comp Biochem Physiol 11:393–409

    Article  CAS  PubMed  Google Scholar 

  65. Tharp GD, Folk GE Jr (1965) Rhythmic changes in rate of the mammalian heart and heart cells during prolonged isolation. Comp Biochem Physiol 14:255–273

    Article  CAS  PubMed  Google Scholar 

  66. Pittendrigh CS, Bruce VG, Rosensweig NS, Rubin ML (1959) Growth patterns in Neurospora: a biological clock in Neurospora. Nature 184:169–170

    Article  Google Scholar 

  67. Feldman JF, Hoyle MN (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75:605–613

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Benzer S (n.d.) Interview by Heidi Aspaturian. Pasadena, California, September 11 – February 1991. Oral History Project, California Institute of Technology Archives. Retrieved from http://resolver.caltech.edu/CaltechOH:OH_Benzer_S

  70. Johnson MS (1926) Activity and distribution of certain wild mice in relation to biotic communities. J Mammal 7:245–277

    Article  Google Scholar 

  71. Szymanski JS (1918) Die Verteilung von Ruhe und Aktivitätsperioden bei einigen Tierarten. Pflugers Arch 172:430–448

    Article  Google Scholar 

  72. Aschoff J (ed) (1981) Biological rhythms. Handbook of behavioral neurobiology, vol 4. Plenum Press, New York, 563 pp

    Google Scholar 

  73. Recording Data (1996) In: The First International Cyberconference on the Psychobiology of Curt P. Richter. Retrieved from: http://www.medicalarchives.jhmi.edu/oldconfer/html/pbl/recrdata.htm

  74. Johnson RF, Moore RY, Morin LP (1988) Running wheel activity in hamsters with hypothalamic damage. Physiol Behav 43:755–763

    Article  CAS  PubMed  Google Scholar 

  75. Brown FA Jr, Shriner J, Ralph CL (1956) Solar and lunar rhythmicity in the rat in “constant conditions” and the mechanism of physiological time measurement. Am J Physiol 184:491–496

    PubMed  Google Scholar 

  76. Lecture by Dr. Colin Pittendrigh (in three parts) on January 20th, 1992 at the Center for Biological Timing at the University of Virginia: “An Historical Overview of Circadian Biology.” Posted by Bernie Possidente, Skidmore College, Department of Biology on behalf of the Society for Research on Biological Rhythms. Retrieved from https://www.youtube.com/watch?v=GxC6qQSMW_Y.

  77. Stillman B, Stewart D, Grodzicker T (2007) Clocks and rhythms. Cold Spring Harbor symposia on quantitative biology, vol 72. The Biological Laboratory, Cold Spring Harbor. Retrieved from http://www.scivee.tv/node/11878/video

  78. The Society for Research on Biological Rhythms. Video history collection. Retrieved from http://clocktool.org/clock-modules/chronohistory/video-history-collection/4.html

  79. Pittendrigh CS (1996) A letter to my friends (posthumous personal communication)

    Google Scholar 

  80. Bünning E (1989) Ahead of his time: Wilhelm Pfeffer. Early advances in plant biology. Carleton University Press, Ottawa, p 83

    Google Scholar 

  81. Bünning E (1973) The physiological clock, Third English edn. Springer, New York, p 9

    Google Scholar 

  82. Schwartz WJ (1987) In vivo metabolic activity of the hamster suprachiasmatic nuclei: use of anesthesia. Am J Physiol 252:R419–R422

    CAS  PubMed  Google Scholar 

  83. Ward RR (1971) The living clocks. Alfred Knopf, New York, 385 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Schwartz, W.J., Daan, S. (2017). Origins: A Brief Account of the Ancestry of Circadian Biology. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_1

Download citation

Publish with us

Policies and ethics