Skip to main content

Biological Potential of Arbuscular Mycorrhizal Fungi

  • Chapter
  • First Online:
Bioformulations: for Sustainable Agriculture

Abstract

Microorganisms play a key role in preserving soil fertility in forest and agro-ecosystems. The exploitation of their beneficial traits represents a promising avenue for the development of more sustainable agriculture. In this chapter, attention is focused on arbuscular mycorrhizal (AM) fungi, considering the aspects that have been highlighted through the sequencing of the Rhizophagus irregularis genome and on the mechanisms involved in the nutritional exchanges that take place during their interaction with plants. Examples of the use of this group of fungi in applicative projects are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullahi R, Lihan S, Edward R (2014) Isolation of indigenous arbuscular mycorrhizal fungi and selection of host plant for inoculum production. Int J Biosci 5:116–122

    Google Scholar 

  • Alguacil MM, Lumini E, Roldan A, Salinas–Garcia JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  CAS  PubMed  Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Yahyaìei MN, Oehl F, Vallino M, Lumini E, Redecker D, Wiemken A, Bonfante P (2011) Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza 21:195–209

    Article  Google Scholar 

  • An GH, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T et al (2010) How does arbuscular mycorrhizal colonization vary with host genotype? An example based on maize (Zea mays) germplasms. Plant Soil 327:441–453

    Article  CAS  Google Scholar 

  • Balestrini R, Bonfante P (2014) Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Front Plant Sci 5:237

    Article  PubMed  PubMed Central  Google Scholar 

  • Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Balestrini R, Magurno F, Walker C, Lumini E, Bianciotto V (2010) Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ Microbiol Rep 2:594–604

    Article  PubMed  Google Scholar 

  • Balestrini R, Lumini E, Borriello R, Bianciotto V (2015) Plant–soil biota interactions. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic Press, Elsevier, London/San Diego/Oxford

    Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant Microbe Interact 27:349–363

    Article  PubMed  Google Scholar 

  • Belmondo S, Fiorilli V, Pérez–Tienda J, Ferrol N, Marmeisse R, Lanfranco L (2014) A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Front Plant Sci 5:436

    Article  PubMed  PubMed Central  Google Scholar 

  • Berruti A, Borriello R, Lumini E, Scariot V, Bianciotto V, Balestrini R (2013) Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Front Plant Sci 4:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V (2014) Arbuscular mycorrhizal fungi and their value for ecosystem management. In: Grillo O (ed) The dynamic balance of the planet. Intech, Rijeka

    Google Scholar 

  • Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fert Soils 48:911–922

    Article  Google Scholar 

  • Borriello R, Berruti A, Lumini E, Della Beffa MT, Scariot V, Bianciotto V (2015) Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) Sites. Mycorrhiza 25:253–265

    Article  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. Tansley review. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Polanco M, Molina S, Zamarreño AM, García-Mina JM, Aroca R (2014) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulfate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447

    Article  CAS  PubMed  Google Scholar 

  • Casieri L, Ait Lahmidi N, Doidy J, Fourrey C, Migeon A, Bonneau L et al (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625

    Article  CAS  PubMed  Google Scholar 

  • Ceballos I, Ruiz M, Fernández C, Peña R, Rodriguez A, Sanders IR (2013) The in vitro mass–produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8:e70633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013a) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013b) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51

    Article  PubMed  Google Scholar 

  • Fiorilli V, Lanfranco L, Bonfante P (2013) The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta 237:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Turrini A, Strani P, Sbrana C, Avio L, Pietrangeli B (2006) Mycorrhizal fungi in ecotoxicological studies: soil impact of fungicides, insecticides and herbicides. Prev Today 2:47–61

    Google Scholar 

  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012a) Nutraceutical value and safety of tomato fruits produced by AM plants. Br J Nutr 107:242–251

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Balestrini R, Volpe V, Guether M, Straub D, Costa A et al (2012b) Two putative–aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus. BMC Plant Biol 12:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P (2014) Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol 204:609–619

    Article  CAS  PubMed  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB et al (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009a) A mycorrhizal–specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009b) Genome–wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P (2014) Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25:359–376

    Article  PubMed  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Kuster H (2011) Laser microdissection unravels cell–type–specific transcription in arbuscular mycorrhizal roots, including CAAT–box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large–scale production of AM fungi: past, present, future. Mycorrhiza 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza–inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415

    Article  CAS  PubMed  Google Scholar 

  • Kuo A, Kohler A, Martin FM, Grigoriev IV (2014) Expanding genomics of mycorrhizal symbiosis. Front Microbiol 5:582

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Hu YJ, Hao ZP, Li H, Wang Y-S, Chen B-D (2013a) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630

    Article  CAS  PubMed  Google Scholar 

  • Li T, Hu YJ, Hao ZP, Li H, Chen BD (2013b) Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance. Plant Signal Behav 8:e24030

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO, Mu D et al (2014) Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet 10:e1004078

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high–throughput sequencing of amplified markers – a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land–use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • Lumini E, Vallino M, Alguacil MM, Romani M, Bianciotto V (2011) Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol Appl 21:1696–1707

    Article  PubMed  Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho P, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini et al (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81:557–564

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza–specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    Article  CAS  PubMed  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I et al (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE 7(4), e34847. doi:10.1371/journal.pone.0034847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent C, Capelli N, Berger A, Crèvecoeur M, Dat JF (2008) An overview of plant responses to soil waterlogging. Plant Stress 2:20–27

    Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs S (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez–Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcon–Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055

    Article  PubMed  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food. ISME J 9:1053–1061

    Article  PubMed  Google Scholar 

  • Roy-Bolduc A, Hijri M (2011) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofertil Biopest 2:104

    Google Scholar 

  • Sbrana C, Avio L, Giovannetti M (2014) Beneficial mycorrhizal symbionts affecting the production of health–promoting phytochemicals. Electrophoresis 35:1535–1546

    Article  CAS  PubMed  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2014) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217

    Article  Google Scholar 

  • Sieh D, Watanabe M, Devers EA, Brueckner F, Hoefgen R, Krajinski F (2013) The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. New Phytol 197:606–616

    Article  CAS  PubMed  Google Scholar 

  • Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769

    Article  CAS  PubMed  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P et al (2013) The genome of an arbuscular mycorrhizal fungus provides insights into the oldest plant symbiosis. PNAS 110:20117–20122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Vosátka M, Látr A, Gianinazzi S, Albrechtová J (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37

    Article  Google Scholar 

  • Zouari I, Salvioli A, Chialva M, Novero M, Miozzi L, Tenore GC, Bagnaresi P, Bonfante P (2014) From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics 15:221

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Balestrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Balestrini, R. (2016). Biological Potential of Arbuscular Mycorrhizal Fungi. In: Arora, N., Mehnaz, S., Balestrini, R. (eds) Bioformulations: for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2779-3_6

Download citation

Publish with us

Policies and ethics