Skip to main content

Molecular Mechanisms of Heat Shock Proteins and Thermotolerance in Plants

  • Chapter
  • First Online:
Abiotic Stress Physiology of Horticultural Crops

Abstract

Plants are sessile organisms which are regularly exposed to many stresses due to changing environmental factors. The majority of the stresses induce the production of a group of proteins called heat shock proteins (Hsps). These proteins are grouped into different classes according to their molecular weight: Hsp100, Hsp90, Hsp70, Hsp60, small heat shock proteins (sHsps), and ubiquitins. Hsps act as molecular chaperones and regulate the protein folding, accumulation and transportation, and removal of damaged proteins. In case of temperature stress signaling pathway, the plasma membrane carries out the primary role with the help of other secondary messengers, such as Ca2+ ions, hydrogen peroxide (H2O2), and nitric oxide (NO). Other components, such as mitogen-activated protein kinases (MAPK) and calmodulins, regulate the activation of heat shock transcription factors (HSFs) and thus the synthesis of Hsps. In this chapter, we discuss the significance of Hsps in thermotolerance and also the role of different classes of Hsps and their interactions with other stress-induced components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy RH, Thiel DS, Peterson NS, Helm K (1989) Thermotolerance is developmentally dependent in germinating wheat seed. Plant Physiol 89:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja I, DeVos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Awasthi R, Bhandari K, Nayyar N (2015) Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci 3:11

    Article  Google Scholar 

  • Bakau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  Google Scholar 

  • Belknap WR, Garbarino JE (1996) The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci 1(10):331–335

    Article  Google Scholar 

  • Binder BM, Patterson SE (2009) Ethylene-dependent and -independent regulation of abscission. Stewart Postharvest Rev 5:1–10. doi:10.2212/spr.2009.1.1

    Article  Google Scholar 

  • Burke JJ (2001) Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol Plant 112:167–170

    Google Scholar 

  • Burke JJ, O’Mahony PJ (2001) Protective role in acquired thermotolerance of developmentally regulated heat shock proteins in cotton seeds. J Cotton Sci 5:174–183

    CAS  Google Scholar 

  • Cellier F, Coneje ́ ro G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive sunflower lines (Helianthus Annuus L.): accumulation of dehydrin transcripts correlates. Plant Physiol 116:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charng Y, Liu H, Liu N, Hsu F, Ko S (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford RMM (1989) Studies in plant survival. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Dat J, Vandenbeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • De Klerk GJ, Pumisutapon P (2008) Protection of in vitro grown Arabidopsis seedlings against abiotic stresses. Plant Cell Tissue Org 95:149–154

    Article  Google Scholar 

  • De la Fuente van Bentem S, Vossen JH, de Vries KJ, van Wees S, Tameling WI, Dekker HL, de Koster CG, Haring MA, Takken FL, Cornelissen BJ (2005) Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant J 43(2):284–298

    Article  Google Scholar 

  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondria precursor polypeptides. Nature 332:800–805

    Article  CAS  PubMed  Google Scholar 

  • Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591

    Article  CAS  PubMed  Google Scholar 

  • Ferguson DL, Guikema JA, Paulsen GM (1990) Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress. Plant Physiol 92:740–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley D, Crechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Chen SN, Song YQ, Li ZG (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust J Plant Physiol 24:371–379

    Article  CAS  Google Scholar 

  • Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J Plant Physiol 164(2):126–136

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 35:105–118

    Article  CAS  PubMed  Google Scholar 

  • Hahn GM, Li GC (1990) Thermotolerance, thermoresistance, and thermosensitization. Stress Proteins Biol Med. doi:10.1101/087969337.19.79

    Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press LLC, Boca Raton

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Helm KW, Lee GJ, Vierling E (1997) Expression and native structure of cytosolic class II small heat-shock proteins. Plant Physiol 114:1477–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath G, Arellano JB, Droppa M, Baron M (1998) Alterations in photosystem II electron transport as revealed by thermoluminescence of Cu-poisoned chloroplasts. Photosynth Res 57:175–181

    Article  CAS  Google Scholar 

  • Hu W, Hu G, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176:583–590

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li MY, Wang F, Xu ZS, Hang W, Wang GL, Ma J, Xiong AS (2015) Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Mol Biol Rep 42:893–905

    Article  CAS  PubMed  Google Scholar 

  • Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J 21:898–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PD, New M, Parker DE, Mortin S, Rigor IG (1999) Surface area temperature and its change over the past 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  • Joyce SM, Cassells AC, Mohan JS (2003) Stress and aberrant phenotypes in vitro culture. Plant Cell Tissue Org 74:103–121

    Article  CAS  Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  • Key J, Lin C, Chen Y (1981) Heat shock proteins of higher plants. Proc Natl Acad Sci U S A 78:3526–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Lee U, Small I, des Francs-Small CC, Vierling E (2012) Mutations in an Arabidopsis mitochondrial transcription termination factor–related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101. Plant Cell 24:3349–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    Article  CAS  PubMed  Google Scholar 

  • Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6(3):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 206:3119–3124

    Article  Google Scholar 

  • Kumar G, Krishnaprasad BT, Savitha M, Gopalakrishna R, Mukhopadhyay K, Ramamohan G, Udayakumar M (1999) Enhanced expression of heat-shock proteins in thermo-tolerant lines of sunflower and their progenies selected on the basis of temperature-induction response. Theor Appl Genet 99(1):359–367

    Google Scholar 

  • Kumar SM, Kumar G, Srikanthbabu V, Udayakumar M (2007) Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes. J Plant Physiol 164(2):111–125

    Article  PubMed  Google Scholar 

  • Labhilili M, Joudrier P, Gautier MF (1995) Characterization of cDNAs encoding Triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance. Plant Sci 112:219–230

    Article  CAS  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Huang B (2005) Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul 47:17–28

    Article  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Song H, Han CT, Lim YP, Chung SM, Hur Y (2010) Expression characteristics of heat shock protein genes in two comparable inbred lines of Chinese cabbage. Chiifu Kenshin Genes Genomics 32(3):247–257

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Acad Press 1:496

    Google Scholar 

  • Li S, Li F, Wang J, Zhang W, Meng Q, Chen TH, Murata N, Yang X (2011) Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ 34(11):1931–1943

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Roberts JK, Key J (1984) Acquisition of thermotolerance in soybean seedlings. Plant Physiol 74:152–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Huang B (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci 40:503–510

    Article  CAS  Google Scholar 

  • Liu Y, Steussy CN, Goebl MG (1995) Intragenic suppression among CDC34 mutations defines a class of ubiquitin-conjugating catalytic domains. Mol Cell Biol 15:5635–5644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD (2006a) Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Ko S, Yeh KC, Charng Y (2006b) Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci 170:976–985

    Article  CAS  Google Scholar 

  • Llusia J, Penuelas J, Munne-Bosch S (2005) Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress. Physiol Plant 124:353–361

    Article  CAS  Google Scholar 

  • Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690–5699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16(12):1555–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):118–25

    Article  CAS  PubMed  Google Scholar 

  • Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106:1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Tanguay RM (2012) Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 44:1613–1621

    Article  CAS  PubMed  Google Scholar 

  • Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Zamir D, Fluhr R (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat super family of plant resistance genes. Plant Cell 9:521–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palleros DR, Welch WJ, Fink AL (1991) Interaction of Hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci U S A 88:5719–5723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peet MM, Willits DH (1998) The effect of night temperature on greenhouse grown tomato yields in warm climate. Agric For Meteorol 92:191–202

    Article  Google Scholar 

  • Piterkovaa J, Luhovaa L, Mieslerovab B, Lebedab A, Petrivalsky M (2013) Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Sci 207:57–65

    Google Scholar 

  • Pratt WB (2001) Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci 6:54–58

    Article  CAS  PubMed  Google Scholar 

  • Pumisutapon, Visser RGF, de Klerk GJ (2012) Moderate abiotic stresses increase rhizome growth and outgrowth of axillary buds in Alstroemeria cultured in vitro. Plant Cell Tissue Organ Cult 110:395–400

    Article  CAS  Google Scholar 

  • Radin JW, Boyer JS (1982) Control of leaf expansion by nitrogen nutrition in sunflower plants. Plant Physiol 69:771–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy VS, Safadi F, Zielinski RE, Reddy ASN (1999) Interaction of a kinesin-like protein with calmodulin isoforms from Arabidopsis. J Biol Chem 274:31727–31733

    Article  CAS  PubMed  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4):458–475

    Article  Google Scholar 

  • Ristic Z, Bukovnik U, Momcilovic I, Fu J, Vara Prasad PV (2008) Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. J Plant Physiol 165(2):192–202

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    Article  CAS  PubMed  Google Scholar 

  • Sangwan V, Dhindsa RS (2002) In vivo and in vitro activation of temperature responsive plant map kinases. FEBS Lett 531:561–564

    Article  CAS  PubMed  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557(1–3):265–268

    Article  CAS  PubMed  Google Scholar 

  • Sarkar NK, Kim Y, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229(4):911–929

    Article  CAS  PubMed  Google Scholar 

  • Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, der Lee TV, Bleeker M, Onstenk J, de Both M, Haring M, Mes J, Cornelissen B, Zabeau M, Vos P (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K, Chugh V, Sahi GK, Chhuneja P (2012) Wheat: mechanisms and genetic means for improving heat tolerance. In: Improving crop resistance to abiotic stress, vols 1&2. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Srikanthbabu V, Ganeshkumar, Krishnaprasada BT, Gopalakrishnaa R, Savitha M, Udayakumar M (2002) Identification of pea genotypes with enhanced thermotolerance using temperature induction response technique (TIR). J Plant Physiol 159(5):535–545

    Article  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Casais C, Ichimura K, Shirasu K (2003a) HSP90 interacts with RAR1 and SGT1, and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci 100:11777–11782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003b) Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J 36(6):820–829

    Article  CAS  PubMed  Google Scholar 

  • Talanova VV, Akimova TV, Titov AF (2003) Effect of whole plant and local heating on the ABA content in cucumber seedling leaves and roots and on their heat tolerance. Russ J Plant Physl 50(1):90–94

    Article  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang JB, Li RQ (1999) Changes of Ca2+ distribution in mesophyll cells of pepper under heat stress. Acta Hortic Sin 26:57–58

    Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chena S, Kong W, Lia S, Archbold DD (2006) Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biol Technol 41(3):244–251

    Article  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Webb AAR, Mcainsh MR, Taylor JE, Hetherington AM (1996) Calcium ions as intercellular second messengers in higher plants. Adv Bot Res 22:45–96

    Article  CAS  Google Scholar 

  • Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    Article  CAS  PubMed  Google Scholar 

  • Yeh CH, Chang PL, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, OsHsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci U S A 94:10967–10972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JH, Wang LJ, Pan QH, Wang YZ, Zhan JC, Huang WD (2008) Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross-adaptation to temperature stresses. Sci Hortic 117(3):231–240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundapura V. Ravishankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Murthy, V.S., Ravishankar, K.V. (2016). Molecular Mechanisms of Heat Shock Proteins and Thermotolerance in Plants. In: Rao, N., Shivashankara, K., Laxman, R. (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2725-0_4

Download citation

Publish with us

Policies and ethics