Skip to main content

Availability of Alpha-Emitting Radioisotopes by Reactor and Accelerator Production and via Decay of Naturally Occurring Parents

  • Chapter
  • First Online:
Radiopharmaceuticals for Therapy
  • 2350 Accesses

Abstract

Because of the high LET, interest in the use of alpha-emitting radioisotopes for targeted therapy has rapidly increased over the last decade. A variety of candidates are available from decay of naturally occurring species such as 229Th and also via both accelerator and reactor production routes (Chaps. 5 and 6). The chemistry required for separation and purification of these actinide species is complex and requires multi-step sequential procedures. Therapeutic applications of alpha-emitting radioisotopes primary focus on oncology and include tumor therapy and palliation of skeletal metastases. The radiopharmaceuticals which have been prepared with alpha emitters and the highlights of preclinical studies and status of clinical applications are discussed in subsequent chapters. This chapter is focused on the production and process chemistry required to provide these alpha emitters for subsequent radiolabeling and biological evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atcher RW, Firedman AM, Hines J. Isotopic generator for bismuth-212 and lead-212 from radium, US Patent 4,663,129, May 5, 1987.

    Google Scholar 

  • Atcher RW, Friedman AM, Hines JJ. An improved generator for the production of 212Pb and 212Bi from 224Ra. Int J Radiat Appl Instrum A. 1988;39:283–6.

    Article  CAS  Google Scholar 

  • Boll RA, Mirzadeh S, Kennel SJ. Optimization of radiolabeling of immunoproteins with 225Bi. Radiochimica Acta. 1997,79:145–9.

    Google Scholar 

  • Davis IA, Glowienka KA, Boll RA, Deal KA, Brechbiel MW, Stabin M, Bochsler PN, Mirzadeh S, Kennel SJ. Comparison of 225actinium chelates: tissue distribution and radiotoxicity. Nucl Med Biol. 1999;26(5):581–9.

    Article  PubMed  CAS  Google Scholar 

  • Deal KA, Davis IA, Mirzadeh S, et al. Improved in vivo stability of actinium-225 macrocyclic complexes. J Med Chem. 1999;42(15):2988–92.

    Article  PubMed  CAS  Google Scholar 

  • Durbin PW, Asling CW, Jeung N, et al. The metabolism and toxicity of radium-223 in rats. Berkeley: University of California Radiation Laboratory; 1958.

    Book  Google Scholar 

  • Firestone RB, Eksrom LP. Radioactive elements, version 2.1. LBNL, USA. http://ie.lbl.gov/toi/index.asp; 2004.

  • Geerlings MW, Kaspersen FM, Apostolidis C, et al. The feasibility of  225Ac as a source of alpha-particles in radioimmunotherapy. Nucl Med Commun. 1993;14:121–5.

    Google Scholar 

  • Guseva LI. A tandem generator system for production of 223Ra and 211Pb/211Bi in DTPA solutions suitable for potential application in radiotherapy. J Radioanalyt Nucl Chem. 2009;281:577–83.

    Article  CAS  Google Scholar 

  • Harrison GE, Carr TE, Sutton A, et al. Plasma concentration and excretion of calcium-47, strontium-85, barium-133 and radium-223 following successive intravenous doses to a healthy man. Nature. 1966;209:526–7.

    Article  PubMed  CAS  Google Scholar 

  • Henriksen G, Schoultz BW, Michaelsen TE, et al. Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol. 2004;31:441–9.

    Article  PubMed  CAS  Google Scholar 

  • Howell RW, Goddu SM, Narra VR, et al. Radiotoxicity of gadolinium-148 and radium-223 in mouse testes: relative biological effectiveness of alpha-particle emitters in vivo. Radiat Res. 1997;147:342–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennel SJ, Mirzadeh S. Vascular targeted radioimmunotherapy with 213Bi–an alpha-particle emitter. Nucl Med Biol. 1998;25(3):241–6.

    Article  PubMed  CAS  Google Scholar 

  • McDevitt MR, Sgouros G, Finn DR, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25(9):1341–51.

    Article  PubMed  CAS  Google Scholar 

  • McDevitt MR, Ma D, Lai LT, et al. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294(5546):1537–40.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin MF, Woodward J, Boll RA, et al. Gold coated lanthanide phosphate nanoparticles for targeted alpha therapy. PLoS One. 2013;8(1):e54531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melville G, Liu SF, Allen BJ. A theoretical model for the production of Ac-225 for cancer therapy by photon induced transmutation of Ra-226. J Appl Radiat Isot. 2006;64(9):979–88.

    Article  CAS  Google Scholar 

  • Mirzadeh S, Garland MA. US Patent 7,852,975 B2, issued Dec. 14, 2010. Production of thorium-229 using helium nuclei.

    Google Scholar 

  • Morgenstern A, Apostolidis C, Bruchertseifer F, et al. Cross-section of the reaction 232Th(p,3n)230Pa for production of 230U for targeted alpha therapy. Appl Radiat Isot. 2008a;66(10):1275–80.

    Google Scholar 

  • Morgernstern A, Lebeda O, Strusa J, et al. Production of 230U/226Th for targeted alpha therapy via proton irradiation of 231Pa. Anal Chem. 2008b;80(22):8763–70.

    Google Scholar 

  • Schwartz J, Jaggi JS, O’Donoghue JA, et al. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody. Phys Med Biol. 2011;56(3):721–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shishkin DN, Krupitskii SV, Kuznetsov SA. Extraction generator of 223Ra for nuclear medicine. Radiokhimiya. 2011;53(4):343–5.

    Google Scholar 

  • Soderquist CZ, McNamara BK, Fisher DR. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources. Curr Radiopharm. 2012;5(3):244–52.

    Article  PubMed  CAS  Google Scholar 

  • Van Geel JNC, Fuger JJ, Koch L. Method for producing actinium-225 and bismuth-213. United States Patent 5355394; 1994.

    Google Scholar 

  • Weidner JW, Mashnik SG, John KD. 225Ac and 223Ra Production via 800 MeV proton irradiation of natural thorium targets. Appl Radiat Isot. 2012;70:2590–5.

    Article  PubMed  CAS  Google Scholar 

  • Zhuikov BL, Kalmykov SN, Ermolaev SV, et al. Production of 225Ac and 223Ra by irradiation of Th with accelerated protons. Radiochemistry. 2012;53(1):73–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Knapp, F.F.(., Dash, A. (2016). Availability of Alpha-Emitting Radioisotopes by Reactor and Accelerator Production and via Decay of Naturally Occurring Parents. In: Radiopharmaceuticals for Therapy . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2607-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2607-9_8

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2606-2

  • Online ISBN: 978-81-322-2607-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics