Skip to main content

Bio-based Wood Polymer Nanocomposites: A Sustainable High-Performance Material for Future

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

Numerous studies are underway on the preparation and applications of petroleum-based polymer nanocomposites. The depletion of world oil pool, nonbiodegradability, and raising cost of petroleum-based materials are some of the disadvantages allied with these polymers-based products. The utilization of renewable materials has attracted researchers because of its easy availability and low cost. They can potentially remove the harmful effects of petroleum-based materials and thus show a greener path in the fields of application of composites. The biocomposites developed by using renewable polymers such as furfuryl alcohol, poly(lactic acid), gluten, starch, soy flour, etc., and naturally available fibers have been gaining considerable attention because of their environment-friendly nature. Wood is a biologically derived biodegradable raw material which requires minimum processing energy. Wood polymer composites (WPC) have tremendous advantageous properties and it rapidly improves the mechanical, physical, chemical as well as other properties of the composite suitable for different outdoor and indoor applications. The properties of the WPC can be improved to the desired level through the application of nanotechnology, cross-linking agents, flame retardants, grafting, etc. Nano-based wood polymer composite provides versatile advantages in their properties compared to the conventional WPC. Flame retardants obtained from renewable resource such as the gum of the plant Moringa oleifera can efficiently improve the flame retardancy along with other properties of the composites. This chapter discusses the various properties of renewable polymer-based wood polymer nanocomposites as a potential, sustainable, green composite to attain durability without using harmful chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11:385–416

    Google Scholar 

  • Agnantopoulou E, Tserki V, Marras S, Philippou J, Panayiotou C (2012) Development of biodegradable composites based on wood waste flour and thermoplastic starch. J Appl Polym Sci 126:E272–E280

    Google Scholar 

  • Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries. Bioresour Technol 99:4661–4667

    CAS  Google Scholar 

  • Athawale VD, Rathi SC (1997) Synthesis and characterization of starch–poly(methacrylic acid) graft copolymers. J Appl Polym Sci 66:1399–1403

    CAS  Google Scholar 

  • Baishya P, Maji TK (2014) Studies on Effects of different crosslinkers on the properties of starch based wood composites doi:10.1021/sc5002325

    Google Scholar 

  • Baysal E (2002) Determination of oxygen index levels and thermal analysis of scots pine (Pinussylvestris L.) impregnated with melamine formaldehyde-boron combinations. J Fire Sci 20:373–389

    CAS  Google Scholar 

  • Baysal E, Ozaki SK, Yalinkilic MK (2004) Dimensional stabilization of wood treated with furfuryl alcohol catalysed by Borates. Wood Sci Technol 38:405–415

    CAS  Google Scholar 

  • Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814

    CAS  Google Scholar 

  • Cao X, Chang PR, Huneault MA (2008a) Preparation and properties of plasticized starch modified with poly caprolactone based waterborne polyurethane. Carbohydr Polym 71:119–125

    CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Huneault MA (2007) Preparation and properties of plasticized starch/multi walled carbon nanotubes composites. J Appl Polym Sci 106:1431–1437

    CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008b) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. express Polym Lett 2:502–510

    Google Scholar 

  • Cao X, Wang Y, Zhang L (2005) Effects of ethyl and benzyl groups on the miscibility and properties of castor oil-based polyurethane/starch derivative semi-interpenetrating polymer networks. Macromol Biosci 5:863–871

    CAS  Google Scholar 

  • Chen B, Evans JRG (2005) Thermoplastic starch-clay nanocomposites and their characteristics. Carbohydr Polym 61:455–463

    CAS  Google Scholar 

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produces in sattionary and agitated culture. Cellulose 11:403–411

    CAS  Google Scholar 

  • Das S, Saha AK, Choudhury PK, Basak R, Mitra BC, Todd T, Lang S, Rowel RM (2000) Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. J Appl Polym Sci 76:1652–1661

    CAS  Google Scholar 

  • Deka BK, Maji TK (2011) Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Compos Part A 42:2117–2125

    Google Scholar 

  • Deka BK, Maji TK (2012) Effect of nanoclay and ZnO on the physical and chemical properties of wood polymer nanocomposite. J Appl Polym Sci 124:2919–2929

    CAS  Google Scholar 

  • Deka BK, Maji TK (2013) Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polym Bull 70:403–417

    CAS  Google Scholar 

  • Deka BK, Mandal M, Maji TK (2012) Effect of nanoparticles on flammability, UV resistance, biodegradability, and chemical resistance of wood polymer nanocomposite. Ind Eng Chem Res 51:11881–11891

    CAS  Google Scholar 

  • Devi RR, Maji TK (2011) Preparation and characterization of wood/styrene-acrylonitrile co-polymer/mmt nanocomposite. J Appl Polym Sci 122:2099–2109

    CAS  Google Scholar 

  • El-Hanafy AA, Elsalam HA, Hafez EE, Borg EL (2008) Molecular characterization of two native Egyptian ligninolytic bacterial strains. J Appl Sci Res 4:1291–1296

    CAS  Google Scholar 

  • Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923

    CAS  Google Scholar 

  • Fernández-Garcia M, Rodriguez JA (2007) Metal oxide nanoparticles, nanomaterials: inorganic and bioinorganic perspectives doi: 10.1002/9781119951438.eibc0331. (Encyclopedia of Inorganic and Bioinorganic Chemistry)

  • Garcia ZF, Martinez E, Castillo AA, Castano VM (1995) Numerical analysis of the experimental mechanical properties in polyester resins reinforced with natural fibers. J Reinf Plast Compos 14:641–649

    Google Scholar 

  • Ghosh SN, Maiti S (1998) Adhesive performance, flammability evaluation and biodegradation study of plant polymer blends. Eur Polym J 34:849–854

    CAS  Google Scholar 

  • Giudice CA, Pereyra AM (2007) Fire resistance of wood impregnated with soluble alkaline silicates. Res Lett 2007:1–4

    Google Scholar 

  • Guhados G, Wan WK, Hutter JL (2005) Measurement of the elastic modulus of single cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  Google Scholar 

  • Hambir S, Bulakh N, Jog JP (2002) Polypropylene/clay nanocomposites: effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior. Polym Eng Sci 42:1800–1807

    CAS  Google Scholar 

  • Hartmann MH (1998) Biopolymers from renewable resources. In: Kaplan DL (ed) Springer, Berlin, Chapter 15, pp 367–411

    Google Scholar 

  • Haygreen JG, Bowyer JL (1982) Forest products and wood science: an Introduction, 1st edn. Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Hazarika A, Maji TK (2014a) Properties of softwood polymer composites impregnated with nanoparticles and melamine formaldehyde furfuryl alcohol copolymer. Polym Eng Sci 54:1019–1029

    CAS  Google Scholar 

  • Hazarika A, Maji TK (2012) Effect of different crosslinkers on properties of melamine formaldehyde-furfuryl alcohol copolymer/montmorillonite impregnated softwood (Ficus hispida). Polym Eng Sci 53:1394–1404

    Google Scholar 

  • Hazarika A, Maji TK (2013a) Study on the properties of wood polymer nanocomposites based on melamine formaldehyde-furfuryl alcohol copolymer and modified clay. J Wood Chem Technol 33:103–124

    CAS  Google Scholar 

  • Hazarika A, Maji TK (2013b) Synergistic effect of nano-TiO2 and nanoclay on the ultraviolet degradation and physical properties of wood polymer nanocomposites. Ind Eng Chem Res 52:13536–13546

    CAS  Google Scholar 

  • Hazarika A, Maji TK (2014b) Properties of softwood polymer composites impregnated with nanoparticles and melamine formaldehyde furfuryl alcohol copolymer. Polym Eng Sci 54:1019–1029

    CAS  Google Scholar 

  • Hazarika A, Maji TK (2014c) Strain sensing behavior and dynamic mechanical properties of carbon nanotubes/nanoclay reinforced wood polymer nanocomposite. Chem Eng J 247:33–41

    CAS  Google Scholar 

  • Hazarika A, Maji TK (2014d) Thermal decomposition kinetics, flammability, and mechanical property study of wood polymer nanocomposite. J Therm Anal Calorim 115:1679–1691

    CAS  Google Scholar 

  • Hazarika A, Mandal M, Maji TK (2014) Dynamic mechanical analysis, biodegradability and thermal stability of wood polymer nanocomposites. Compos Part B 60:568–576

    CAS  Google Scholar 

  • Hetzer M, Kee D (2008) Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: a review. Chem Eng Res Des 86:1083–1093

    CAS  Google Scholar 

  • Hill CAS, Abdul KHPS, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crops Prod 8:53–63

    CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi WY, Bahnemann W (1995) Environmental application of semiconductor photocatalysis. Chem Rev 95:69–96

    CAS  Google Scholar 

  • Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:4856–4869

    CAS  Google Scholar 

  • Huda MS, Mohanty AK, Misra M, Drzal LT, Schut EJ (2005) Green composites from recycled cellulose and poly (lactic acid): physico-mechanical and morphological properties evaluation. Mater Sci 40:4221–4229

    CAS  Google Scholar 

  • Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    CAS  Google Scholar 

  • Jana T, Roy BC, Maiti S (2000) Biodegradable film modification of the biodegradable film for fire retardancy. Polym Degrad Stab 69:79–82

    CAS  Google Scholar 

  • Jimenez M, Duquesne S, Bourbigot S (2006) Intumescent fire protective coating: toward a better understanding of their mechanism of action. Thermochim Acta 449:16–26

    CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    CAS  Google Scholar 

  • Johnson MR, Tucker N, Barnes S (2003) Impact performance of miscanthus/ novamont mater bi biocomposites. Polym Test 22:209–215

    CAS  Google Scholar 

  • Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20:3122–3126

    CAS  Google Scholar 

  • Karak N (2006) Polymer (epoxy) clay nanocomposites. J Polym Mater 23:1–20

    CAS  Google Scholar 

  • Khanna S, Srivastava AK (2007) Production of poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) having a high hydroxyvalerate content with valeric acid feeding. J Ind Microbiol Biot 34:457–461

    CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Hesler N, Koth D, Sultanova B (2009) Nanocellulose materials—different cellulose, different functionality. Macromol Symp 280:60–71

    CAS  Google Scholar 

  • Lande S, Høibø OA, Larnøy E (2010) Variation in treatability of Scots pine (Pinussylvestris) by the chemical modification agent furfuryl alcohol dissolved in water. Wood Sci Technol 44:105–118

    CAS  Google Scholar 

  • Lande S, Westin M, Schneider M (2004a) Chemistry and ecotoxicology of furfurylated wood. Scand J For Res 19:14–21

    Google Scholar 

  • Lande S, Westin M, Schneider M (2004b) Properties of furfurylated wood. Scand J For Res 19:22–30

    Google Scholar 

  • Lande S, Westin M, Schneider MH (2003) Development of modified wood products based on furan chemistry. Mol Cryst Liq Cryst 484:367–378

    Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012a) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012b) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    CAS  Google Scholar 

  • Leszczy´nska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonitenanocomposites with improved thermal properties. Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22

    Google Scholar 

  • Li B, He JM (2004) Investigation of mechanical property, flame retardancy and thermal degradation of LLDPE–wood-fibre composites. Polym Degrad Stab 83:241–246

    CAS  Google Scholar 

  • Li Y, Liu Z, Dong X, Fu Y, Liu Y (2013) Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. Int Biodeter Biodegr 84:401–406

    CAS  Google Scholar 

  • Liang F, Wang Y, Sun XS (1999) Green composites using cross-linked soy flour and flax yarns. J Polym Eng 19:383–393

    CAS  Google Scholar 

  • Liu R, Cao J, Luo S, Wang X (2013) Effects of two types of clay on physical and mechanical properties of poly(lactic acid)/wood flour composites at various wood flour contents. J Appl Polym Sci 127:2566–2573

    CAS  Google Scholar 

  • Malmstrom E, Carlmark A (2012) Controlled grafting of cellulose fibres—an outlook beyond paper and cardboard. Polym Chem 3:727–733

    Google Scholar 

  • Martinez-Hernandez AL, Velasco-Santos C (2012) Keratin fibers from chicken feathers: structure and advances in polymer composites. Nova Publishers, New York, pp 149-211

    Google Scholar 

  • Martínez-Hernández AL, Velasco-Santos C, de-Icaza M, Castaño VM (2007) Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Compos Part B Eng 38:405–410

    Google Scholar 

  • Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617

    CAS  Google Scholar 

  • Md. Islama S, Hamdana S, Talibb ZA, Ahmeda AS, Md. Rahmana R (2012) Tropical wood polymer nanocomposite (WPNC): The impact of nanoclay on dynamic mechanical thermal properties. Compos Sci Technol 72:1995–2001

    Google Scholar 

  • Meng QK, Hetzer M, De Kee D (2011a) PLA/clay/wood nanocomposites: nanoclay effects on mechanical and thermal properties. J Compos Mater 45:1145–1158

    CAS  Google Scholar 

  • Meng QK, Hetzer M, Kee DD (2011b) PLA/clay/wood nanocomposites: nanoclay effects on mechanical and thermal properties. J Compos Mater 45:1145–1158

    CAS  Google Scholar 

  • Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7:2249–2258

    CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    CAS  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24

    Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552

    CAS  Google Scholar 

  • Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852

    CAS  Google Scholar 

  • Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    CAS  Google Scholar 

  • Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526

    CAS  Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology: structure, identification, uses, and properties of the commercial woods of the United States, 4th edn. McGraw Hill Inc., New York

    Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    CAS  Google Scholar 

  • Raberg U, Hafren J (2008) Biodegradation and appearance of plastic treated solid wood. Int Biodeterior Biodegrad 62:210–213

    CAS  Google Scholar 

  • Raj RG, Kokta BV, Maldas D, Daneault C (1989) Use of wood fibers in thermoplastics. VII the effect of coupling agents in polyethylene-wood fiber composites. J Appl Polym Sci 37:1089–1103

    CAS  Google Scholar 

  • Rowell RM, Young RA, Rowell JK (1997) Paper and composites from agro-based resources. CRC Lewis Publishers, Boca Raton FL

    Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    CAS  Google Scholar 

  • Sain M, Park HS, Suhara F, law S (2004) Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym Degrad Stab 83:363–364

    CAS  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–659

    CAS  Google Scholar 

  • Santayanon R, Wootthikanokkhan J (2003) Modification of cassava starch by using propionic anhydride and properties of the starch-blended polyester polyurethane. Carbohydr Polym 51:17–24

    CAS  Google Scholar 

  • Schneider MH (1995) New cell wall and cell lumen wood polymer composites. Wood Sci Technol 29:135–158

    Google Scholar 

  • Scott G (2000) Green- polymers. Polym Degrad Stab 68:1–7

    CAS  Google Scholar 

  • Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47:1956

    CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    CAS  Google Scholar 

  • Sjostrom E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Academic Press, New York

    Google Scholar 

  • Agustin MB, Ahmmad B, Leon ERPD, Buenaobra JL, Salazar JR, Hirose F (2013) Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polym Compos 34:1325–1332

    CAS  Google Scholar 

  • Suda K, Kanlaya M, Manit S (2002) Synthesis and property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)] superabsorbent via-γ irradiation. Polymer 43:3915–3924

    Google Scholar 

  • Tábi T, Kovács JG (2007) Examination of injection molded thermoplastic maize starch. Express Polym Lett 1:804–809

    Google Scholar 

  • Tizzotti M, Charlot A, Fleury E, Stenzel M, Bernard J (2010) Modification of polysaccharides through controlled/living radical polymerization grafting-towards the generation of high performance hybrids. Macromol Rapid Commun 31:1751–1772

    CAS  Google Scholar 

  • Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Expert Rev Med Devices 3:853–868

    CAS  Google Scholar 

  • Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to nature works polylactide (PLA) production. Polym Degrad Stab 80:403–419

    CAS  Google Scholar 

  • Vollenberg PHT, Heiken D (1989) Particle size dependence of the Young’s modulus of filled polymers: 1 Preliminary experiments. Polymer 30:1656–1662

    CAS  Google Scholar 

  • Watanabe M, Sakurai M, Maeda M (2009) Preparation of ammonium polyphosphate and its application to flame retardant. Phosphorus Res Bull 23:35–44

    CAS  Google Scholar 

  • Wegner T, Skog KE, Ince PJ, Michler CJ (2010) Uses and desirable properties of wood in the 21st Century. J Forest 108:165–173

    Google Scholar 

  • Weil ED, Levchik SV, Ravey M, Zhu W (1999) A Survey of recent progress in phosphorus-based flame retardants and some mode of action studies. Phosphorus, sulfur, Silicon Relat Elem 144:17–20

    Google Scholar 

  • Wool RP, Khot SN, Lascala JJ, Bunker SP, Lu J, Thielemans W (2002) Affordable composites and plastics from renewable resources Part II: Manufacture of composites. Advancing sustainability through green chemistry and engineering. ACS Symp Ser 823:205–224

    CAS  Google Scholar 

  • Xie F, Pollet E, Halleya PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628

    CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Mai C, Militz H (2011) Dynamic water vapor sorption properties of wood treated with glutaraldehyde. Wood Sci Technol 45:49–61

    CAS  Google Scholar 

  • Yang KK, Wang XL, Wang YZ (2007) Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 13:485–500

    CAS  Google Scholar 

  • Yanga HS, Kimb HJ, Parkc HJ, Leed BJ, Hwang TS (2007) Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 77:45–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun K. Maji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Hazarika, A., Baishya, P., Maji, T.K. (2015). Bio-based Wood Polymer Nanocomposites: A Sustainable High-Performance Material for Future. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_8

Download citation

Publish with us

Policies and ethics