Skip to main content

Finite Element Simulation of Laser Cladding for Tool Steel Repair

  • Chapter
  • First Online:
Lasers Based Manufacturing

Abstract

Laser cladding is a coating technique, wherein several layers of clad materials are deposited over a substrate so as to enhance the physical properties of the work-piece such as wear resistance, corrosion resistance etc. Strong interfacial bond with minimum dilution between the material layers is a pre-requisite of the process. This technique also finds widespread applications in repair and restoration of aerospace, naval, automobile components. A thermomechanical finite element models is developed wherein the Gaussian moving heat source is modelled along with element birth and death technique to simulate powder injection laser cladding of CPM9V over H13 tool steel, which is extensively used for repair of dies. The present work focuses on predicting the clad geometry and other clad characteristics such as the heat affected zone, dilution region and the subsequent residual stress evolution. It is expected that this knowledge can be used for repair of structures subjected to cyclic thermomechanical loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amon, C. H., Beuth, J. L., Weiss, L. E., Merz, R., & Prinz, F. B. (1998). Shape deposition manufacturing with micro-casting: Processing, thermal and mechanical issues. Journal of Manufacturing Science and Engineering, 120, 656–665.

    Article  Google Scholar 

  • Brandt, M., Sun, S., Alam, N., Bendeich, P., & Bishop, A. (2009). Laser cladding repair of turbine blades in power plants: From research to commercialization. International Heat Treatment and Surface Engineering, 3, 105–114.

    Article  Google Scholar 

  • Chen, J., & Xue, L. (2010). Laser cladding of wear resistant CPM9V tool steel on hardened H13 substrate for potential automotive tooling applications. In Materials Science and Technology 2010 Conference and Exhibition, (pp. 2459–2470).

    Google Scholar 

  • Costa, L., & Vilar, R. (2009). Laser powder deposition. Rapid Prototyping Journal, 15, 264–279.

    Article  Google Scholar 

  • Da Sun, S., Liu, Q., Brandt, M., Janardhana, M., Clark, G. (2012). Microstructure and mechanical properties of laser cladding repair of AISI 4340 steel, 28th International Congress of the Aeronautical Sciences.

    Google Scholar 

  • Deus, A., Mazumder, J. (2006). Three-dimensional finite element models for the calculation of temperature and residual stress fields in laser cladding. In Laser Materials Processing Conference, ICALEO 2006 Congress Proceedings (pp. 496–505).

    Google Scholar 

  • Ghosh, S., & Choi, J. (2005). Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process. Journal of Laser Applications, 17, 144–158.

    Article  Google Scholar 

  • Ghosh, S., & Choi, J. (2006). Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process. Journal of Heat Transfer, 128, 662–679.

    Article  Google Scholar 

  • Ghosh, S., & Choi, J. (2007). Deposition pattern based thermal stresses in single-layer laser aided direct material deposition process. Journal of Manufacturing Science and Engineering, 129, 319–332.

    Article  Google Scholar 

  • Griffith, M. L., Schlienger, M. E., Harwell, L. D., Oliver, M. S., Baldwin, M. D., Ensz, M. T., et al. (1998). Thermal behavior in the LENS process. In D. Bourell, J. Beaman, R. Crawford, H. Marcus, & J. Barlow (Eds.), Paper presented at Solid Freeform Fabrication Symposium. Austin, TX: University of Texas at Austin.

    Google Scholar 

  • Grum, J., & Slabe, J. M. (2003). A comparison of tool-repair methods using CO2 laser surfacing and arc surfacing. Applied Surface Science, 208–209, 424–431.

    Article  Google Scholar 

  • Henderson, M. B., Arrell, D., Larsson, R., Heobel, M., & Marchant, G. (2004). Nickel based superalloy welding practices for industrial gas turbine applications. Science and Technology Welding and Joining, 9, 13–21.

    Article  Google Scholar 

  • Hu, Y. P., Chen, C. W., & Mukherjee, K. (1998a). Development of a new laser cladding process for manufacturing cutting and stamping dies. Journal of Materials Science, 33, 1287–1292.

    Article  Google Scholar 

  • Hu, Y., Chen, C., & Mukherjee, K. (1998b). Innovative laser-aided manufacturing of patterned stamping and cutting dies: Processing parameters. Materials and Manufacturing Processes, 13, 369–387.

    Article  Google Scholar 

  • Kawasaki, M., Takase, K., Kato, S., Nakagawa, M. & Mori, K. (1992). Development of engine valve seats directly deposited onto aluminium cylinder head by laser cladding process, SAE Technical Paper Series, SAE Paper No. 920571. SAE International, Warrendale, PA, pp. 1–15.

    Google Scholar 

  • Lee, H. K., Kim, K. S., & Kim, C. M. (2000). Engineering Fracture Mechanics, 66, 403–419.

    Article  Google Scholar 

  • Leunda, J., & Soriano, C. (2011). Laser cladding of vanadium-carbide tool steels for die repairs. Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing, physics procedia, 12, 345–352.

    Google Scholar 

  • Liu, Q., Janardhana, M., Hinton, B., Brandt, M., & Sharp, K. (2011). Laser cladding as a potential repair technology for damaged aircraft components. International Journal of Structural Integrity, 2, 314–331.

    Article  Google Scholar 

  • Majumdar, J. D., Pinkerton, A., Liu, Z., Manna, I., & Li, L. (2005). Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless steel. Applied Surface Science, 247, 373–377.

    Article  Google Scholar 

  • Mc Daniels, R. L., White, S. A., Liaw, K., Chen, L., McCay, M. H., Liaw, P. K. (2008). Effects of a laser surface processing induced heat-affected zone on the fatigue behavior of AISI 4340 steel. Materials Science and Engineering: A, 485, 500–507.

    Google Scholar 

  • Moat, R., Pinkerton, A. J., Hughes, D. J., Li, L., Preuss, M., and Withers, P. J. (2007). Stress distributions in multilayer laser deposited Waspaloy parts measured using neutron diffraction. In Proceedings of 26th International Congress on Applications of Lasers and Electro- optics (ICALEO). Orlando, California, CD.

    Google Scholar 

  • Onoro, J., & Ranninger, C. (1997). Fatigue behavior of laser welds of high-strength low-alloy steels. Journal of Material Process and Technology, 68, 68–70.

    Article  Google Scholar 

  • Paul, S., Ashraf, K., Singh, R. (2014). Residual stress modeling of powder injection laser surface cladding for die repair applications. In Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference MSEC2014. Detroit, Michigan, USA.

    Google Scholar 

  • Picasso, M., Marsden, C.F., Wagniib.RE J.-D., Frenk, A., Rappaz, M. (1994). A Simple but realistic model for laser cladding, metallurgical and materials transactions B 25B, p. 281.

    Google Scholar 

  • Pinkerton, A., Wang, W., Li, L. (2008). Component repair using laser direct metal deposition. In Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222, 827–836.

    Google Scholar 

  • Pinkerton, A. J., Karadge, M., Syed, W. U. H., & Li, L. (2006). Thermal and microstructural aspects of the laser direct metal deposition of Waspaloy. Journal of Laser Applications, 18, 216–226.

    Article  Google Scholar 

  • Plati, A., Tan, J., Golosnoy, I., Persoons, R., Acker, K., & Clyne, T. (2006). Residual stress generation during laser cladding of steel with a particulate metal matrix composite. Advance Engineering Materials, 8, 619–624.

    Article  Google Scholar 

  • Qi, H., Mazumder, J., Ki, H. (2006). Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. Journal of Applied Physics, 100, 024903.

    Google Scholar 

  • Schneider, M. F. (1998). Laser cladding with powder; Effect of some machining parameters on clad properties. Ph.D Thesis, University of Twente, Enschede, The Netherlands.

    Google Scholar 

  • Shanmugam, N. S., Buvanashekaran, G., Sankaranarayanasamy, K. (2013). Some studies on temperature distribution modelling of laser butt welding of AISI 304 stainless steel sheets. World Academy of Science, Engineering and Technology 7.

    Google Scholar 

  • Steen, W. M. (2003). Laser material processing (3rd ed.). London: Springer.

    Book  Google Scholar 

  • Su, C. Y., Chou, C. P., Wu, B. C., Lih, W. C. (1997). Plasma transferred arc repair welding of the nickel-base superalloy IN-738LC. Journal of Materials Engineering and Performance 6, 619–627.

    Google Scholar 

  • Suarez, A., Amado, J., Tobar, M., Yanez, A., Fraga, E., & Peel, M. (2010). Study of residual stresses generated inside laser cladded plates using FEM and diffraction of synchrotron radiation. Surface and Coatings Technology, 204, 1983–1988.

    Article  Google Scholar 

  • Tan, J. C., Looney, L., & Hashmi, M. S. J. (1999). Component repair using HVOF thermal spraying. Journal of Materials Processing Technology, 92–93, 203–208.

    Article  Google Scholar 

  • Tusek, J., Ivancic, R. (2004). Computer-aided analysis of repair welding of stamping tools. Z. fu¨ r Metallkunde, 95, 8–13.

    Google Scholar 

  • Wang, J., Prakash S., Joshi Y., Liou F. (2002). Laser Aided Part Repair-A Review. In Solid Freeform Fabrication Proceedings, pp. 57–64.

    Google Scholar 

  • Wang, S.-H., Chen, J.-Y., & Xue, L. (2006). A study of the abrasive wear behavior of laser-clad tool steel coatings. Surface and Coatings Technology, 200, 3446–3458.

    Article  Google Scholar 

  • Zhang, C. H., Hao, Y. X., Qi, L., Hu, F., Zhang, S., & Wang, M. C. (2012). Preparation of Ni-Base alloy coatings on monel alloy by laser cladding. Advanced Materials Research, 472–475, 313–316.

    Google Scholar 

  • Zhang, P., Ma, L., Yuan, J., Yin, X., & Cai, Z. (2008). The finite element simulation research on stress-strain field of laser cladding. Journal of Engineering Materials, 373–374, 322–325.

    Google Scholar 

  • Zhang, Y., Yuan, X., & Zeng, X. (1999). ICALEO 1999: Laser materials processing conference (p. 241). USA: San Diego.

    Google Scholar 

  • Zhang, Y., Zeng, X., & Yuan, X. (2001). ICALEO 2001: Applications of lasers and electro-optics (p. 577). USA: Jacksonville.

    Google Scholar 

  • Zheng, L., Xie, W., & Li, Y. (2011). The numerical simulation on the temperature field of laser cladding. Journal of Engineering Materials, 467–469, 1372–1376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Paul, S., Singh, R., Yan, W. (2015). Finite Element Simulation of Laser Cladding for Tool Steel Repair. In: Joshi, S., Dixit, U. (eds) Lasers Based Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2352-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2352-8_9

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2351-1

  • Online ISBN: 978-81-322-2352-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics