Skip to main content

Finite Element Simulations of Laser Bending of Small Sized Sheets

  • Chapter
  • First Online:
Lasers Based Manufacturing

Abstract

Recently, laser bending has received the attention for a wide variety of applications in industries due to its excellent bend quality with high productivity and flexibility. In this work, finite element simulations of bending of small sized sheets are carried out using ABAQUS package. The temperature and strain-rate dependent material properties of D36 shipbuilding steel sheet are considered. Simulation results throw light on the bending behavior of small sized sheet components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Dixit, U. S., Joshi, S. N., & Kumar, V. H. (2013). Microbending with lasers. In V. K. Jain (Ed.), Micromanufacturing processes. Boca Raton: CRC Press.

    Google Scholar 

  • Geiger, M., & Vollertsen, F. (1993). The mechanisms of laser forming. CIRP Annals Manufacturing Technology, 42, 301–304.

    Article  Google Scholar 

  • Hu, Z., Labudovic, M., Wang, H., & Kovacevic, R. (2001). Computer simulation and experimental investigation of sheet metal bending using laser beam scanning. International Journal of Machine Tools and Manufacture, 41, 589–607.

    Article  Google Scholar 

  • Ji, Z., & Wu, S. (1998). FEM simulation of the temperature field during the laser forming of sheet metal. Journal of Materials Processing Technology, 74, 89–95.

    Article  Google Scholar 

  • Labeas, G. N. (2008). Development of a local three-dimensional numerical simulation model for the laser forming process of aluminium components. Journal of Materials Processing Technology, 207, 248–257.

    Article  Google Scholar 

  • Li, W., & Yao, Y. L. (2001). Numerical and experimental investigation of convex laser forming process. Journal of Manufacturing Processes, 3, 73–81.

    Article  Google Scholar 

  • Liu, J., Sun, S., & Guan, Y. (2009). Numerical investigation on the laser bending of stainless steel foil with pre-stresses. Journal of Materials Processing Technology, 209, 1580–1587.

    Article  Google Scholar 

  • Merklei, M., Hennige, T., & Geiger, M. (2001). Laser forming of aluminum and aluminum alloys microstructural investigation. Journal of Materials Processing Technology, 115, 159–165.

    Article  Google Scholar 

  • Pretorius, T. (2009). Laser forming. In J. Dowden (Ed.), The theory of laser materials processing (Vol. 119, pp. 281–314). UK: Springer.

    Google Scholar 

  • Shichun, W., & Jinsong, Z. (2001). An experimental study of laser bending for sheet metals. Journal of Materials Processing Technology, 110, 160–163.

    Article  Google Scholar 

  • Smith, T.M., Michaleris, P., Reutzel, E.W., & Hall, B. (2012). Finite element model of pulsed laser forming. In the 13th International Symposium on Laser Precision Microfabrication.

    Google Scholar 

  • Thomson, G., & Pridham, M. (2001). Material property changes associated with laser forming of mild steel components. Journal of Materials Processing Technology, 118, 40–44.

    Article  Google Scholar 

  • Vásquez-Ojeda, C., & Ramos-Grez, J. (2009). Bending of stainless steel thin sheets by a raster scanned low power CO2 laser. Journal of Materials Processing Technology, 209, 2641–2647.

    Article  Google Scholar 

  • Walczyk, D. F., Vittal, S., & York, N. (2000). Bending of titanium sheet using laser forming. Journal of Manufacturing Processes, 2, 258–269.

    Article  Google Scholar 

  • Wang, X., Xu, W. X., Xu, W. J., Hu, Y. F., Liang, Y. D., & Wang, L. J. (2011). Simulation and prediction in laser bending of silicon sheet. Transactions of Nonferrous Metals Society of China, 21, s188–s193.

    Article  Google Scholar 

  • Zhanga, L., Reutzelb, E. W., & Michalerisc, P. (2004). Finite element modeling discretization requirements for the laser forming process. International Journal of Mechanical Sciences, 46, 623–637.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Besufekad N. Fetene or Uday S. Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Fetene, B.N., Dixit, U.S. (2015). Finite Element Simulations of Laser Bending of Small Sized Sheets. In: Joshi, S., Dixit, U. (eds) Lasers Based Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2352-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2352-8_3

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2351-1

  • Online ISBN: 978-81-322-2352-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics