Skip to main content

Magnetic Resonance Image Quality Enhancement Using Transform Based Hybrid Filtering

  • Conference paper
  • First Online:
Advancements of Medical Electronics

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

This paper proposes a novel methodology for improving the quality of magnetic resonance image (MRI). The presence of noise affects the image analysis task by degrading the visual contents of image. The proposed methodology integrates transform domain method, discrete wavelet transform with spatial domain filter, Non local means to smoothed out noisy interferences leading to the improvement of visual characteristics of MRI insights. The quantitative validation of the proposed technique has been done and experimental result shows the effectiveness of this algorithm over anisotropic diffusion, bilateral, trilateral and wavelet shrinkage filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  2. Krissian K, Aja-Fernández S (2009) Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans Image Process 18(10):2265–2274

    Article  MathSciNet  Google Scholar 

  3. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings of the sixth international conference on computer vision, pp 839–846

    Google Scholar 

  4. Wong WCK, Chung ACS, Yu SCH (2004) Trilateral filtering for biomedical images. IEEE Int Symp Biomed Imaging: Nano to Macro 1:820–823

    Google Scholar 

  5. Xu Y, Weaver JB, Healy DM, Lu J (1994) Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Trans Image Process 3(6):747–758

    Article  Google Scholar 

  6. Wood JC, Johnson KM (1999) Wavelet packet denoising of magnetic resonance images: importance of Rician noise at low SNR. Magn Reson Med 41(3):631–635

    Article  Google Scholar 

  7. Nowak RD (1999) Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans Image Process 8(10):1408–1419

    Article  Google Scholar 

  8. Buades A, Coll B, Morel J-M (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530

    Article  MATH  MathSciNet  Google Scholar 

  9. Manjón JV, Caballero JC, Lull JJ, Marti GG, Bonmati LM, Robles M (2008) MRI denoising using non-local means. Med Image Anal 12(4):514–523

    Article  Google Scholar 

  10. Manjon JV, Coupe P, Bonmati LM, Collins DL, Robles M (2010) Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31(1):192–203

    Article  Google Scholar 

  11. Erturk MA, Bottomley PA, El-Sharkawy AM (2013) Denoising MRI using spectral subtraction. IEEE Trans Biomed Eng 60(6):1556–1562

    Google Scholar 

  12. Ng H-F (2006) Automatic thresholding for defect detection. Pattern Recogn Lett 27(14):1644–1649

    Article  Google Scholar 

  13. Starck JL, Candès EJ, Donoho DL (2002) The curvelet transform for image denoising. IEEE Trans Image Process 11(6):670–684

    Article  MATH  MathSciNet  Google Scholar 

  14. Balster EJ, Zheng YF, Ewing RL (2005) Feature-based wavelet shrinkage algorithm for image denoising. IEEE Trans Image Process 14(12):2024–2039

    Article  Google Scholar 

  15. Zijdenbos A, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21(10):1280–1291

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge EKO CT & MRI Scan Centre at Medical College and Hospitals Campus, Kolkata-700073 for providing brain MR images. Authors would like to acknowledge Board of Research in Nuclear Sciences (BRNS), Dept. of Atomic Energy for financially supporting the research work under the grant number 2013/36/38-BRNS/2350 dt. 25-11-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Nag, M.K., Koley, S., Chakraborty, C., Sadhu, A.K. (2015). Magnetic Resonance Image Quality Enhancement Using Transform Based Hybrid Filtering. In: Gupta, S., Bag, S., Ganguly, K., Sarkar, I., Biswas, P. (eds) Advancements of Medical Electronics. Lecture Notes in Bioengineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2256-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2256-9_4

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2255-2

  • Online ISBN: 978-81-322-2256-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics