Skip to main content

An Introduction to CNLS and StoNED Methods for Efficiency Analysis: Economic Insights and Computational Aspects

  • Chapter
  • First Online:
Benchmarking for Performance Evaluation

Abstract

This chapter describes the economic insights of the unifying framework known as Stochastic semi-Nonparametric Envelopment of Data (StoNED), which combines the virtues of the widely used neoclassic production models, Data Envelopment Analysis (DEA), and Stochastic Frontier Analysis (SFA). Like DEA, StoNED is able to estimate an axiomatic production function relaxing the functional form specification required in most implementations of SFA. However, StoNED is also consistent with the econometric models of noise, providing a distinct advantage over standard DEA models. Further, StoNED allows for the possibility that systematic inefficiency is negligible consistent with neoclassical theory, thus providing a unifying framework. StoNED is implemented by estimating a conditional mean using convex nonparametric least squares (CNLS) followed by using standard SFA techniques to estimate the average efficiency and decompose the residual. Detailed descriptions of General Algebraic Modeling System (GAMS) and matrix laboratory (MATLAB) code will aid readers in implementing the StoNED estimator.

The authors would like to gratefully acknowledge both the support from the Aalto Energy Initiative, as part of the Sustainable Transition of European Energy Markets—STEEM project and the Finnish Energy Market Authority for providing the data on the performance of electricity distributors in Finland. We are also indebted to Abolfazl Keshvari for his helpful comments and his assistance in developing Fig. 3.8. Additional codes and materials are available at http://www.andyjohnson.guru

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have found CVX, an additional toolbox that must be downloaded separately, for MATLAB performs well. Also our experience is, CPlex, Minos, XA are solvers for GAMS that perform well. However, because the computational optimization algorithms differ between software, often slight differences in the results exist for both QP and NLP problems.

  2. 2.

    For extensions to the general multi-input multi-output setting, see Kuosmanen et al. (2014).

  3. 3.

    See Sect. 2.3.2 of the Chapter by Ray and Chen in this book for a more detailed description of the assumptions regarding the production possibility set.

  4. 4.

    Modeling heteroskedastic inefficiency and noise is discussed in Kuosmanen et al. (2014), Sect. 8.

  5. 5.

    Our discussion centers on estimators based on ordinary least squares. The attempts of Banker and Maindiratta (1992) to combine axiomatic estimation with standard models of noise in a maximum likelihood framework should also be recognized. However, to the best of our knowledge no applications of this maximum likelihood approach exist do to computational challenges.

  6. 6.

    We follow the terminology of Chen (2007), who provides the following intuitive definition: “An econometric model is termed ‘parametric’ if all of its parameters are in finite dimensional parameter spaces; a model is ‘nonparametric’ if all of its parameters are in infinite-dimensional parameter spaces; a model is ‘semiparametric’ if its parameters of interests are in finite-dimensional spaces but its nuisance parameters are in infinite-dimensional spaces; a model is ‘semi-nonparametric’ if it contains both finite-dimensional and infinite-dimensional unknown parameters of interests” Chen (2007, p 5552, footnote 1).

  7. 7.

    The Finnish Energy Market Authority measures CAPEX as the replacement value of the capital stock owned by the distributor depreciated by a constant depreciation rate. Thus, CAPEX is directly proportional to the total capital stock.

  8. 8.

    The only distinction between parameters and variables in GAMS is variables are determined as the results of an optimization problem, whereas parameters are assigned values via calculations or assign statements.

  9. 9.

    When entering data, be sure to use good practices regarding significant figures. If you include data with many significant figures, this will increase computational time significantly.

  10. 10.

    Note the path should be adjusted to point to the location where the data file is saved.

  11. 11.

    The parallel literature of isotonic regression (Ayer et al. 1955; Brunk 1955; Barlow et al. 1972) considers estimation of monotonic increasing or decreasing curves without imposing concavity or convexity. Keshvari and Kuosmanen (2013) introduced isotonic regression to efficiency analysis.

  12. 12.

    From this point forward, we will refer to convex regression, recognizing that concave regression can be achieved through reversing an inequality, discussed in Sect. 3.3.2.

  13. 13.

    In a power curve or s-shape single-input production function, the inflection point in the input value at which the second derivative changes sign or in other words where the production function changes from being a convex function to a concave function.

  14. 14.

    www.cvxr.com.

  15. 15.

    Note in our notation, \({\varvec{\upbeta}}_{i}^{\prime } {\mathbf{x}}_{i} = \beta_{i1} x_{i1} + \beta_{i2} x_{i2} + \cdots + \beta_{im} x_{im} .\) Further, this formulation is intended to show the relationship to other mathematical models, i.e., classic OLS regression and the Afriat inequalities. For computational purposes, the problem may be reformulated to reduce the number of variables and/or constraints as discussed in Sect. 3.4.1.

  16. 16.

    For those familiar with DEA, the parameters \(\alpha_{i}\) and \({\varvec{\upbeta}}_{i}\) are analogous to \(u_{0}\) and \({\mathbf{u}}\) in the multiplier formulation of DEA.

  17. 17.

    The linear program used to calculate the lower bound function \(\hat{f}_{\hbox{min} }^{{\text{CNLS}}}\) is equivalent to the DEA estimator under the assumption of variables returns to scale and replacing the observed output levels with the estimated output level \(\hat{f}^{{\text{CNLS}}} ({\mathbf{x}}_{i} )\) coming from (3.5).

  18. 18.

    Our experiments with GAMS were performed on a personal computer with an Intel Core i7 CPU 1.60 GHz and 8-GB RAM. The optimization problems were solved in GAMS 23.3 using the CPLEX 12.0 Quadratically Constrained Program (QCP) solver. Our experiments with MATLAB were performed on a laptop computer with an Intel Core i5 CPU 2.50 GHz and 4-GB RAM.

  19. 19.

    From this point forward, we refer to only Eq. (3.5), but issues regarding (3.5) apply equally to (3.7) below.

  20. 20.

    Approximation algorithms are also possible strategies, but we focus on calculating the exact solution to the CNLS formulation.

  21. 21.

    Lee et al. found that if there were more than 100 observations, the group strategy for adding constraints was always preferred to other methods tested and that the sweet spot strategy’s threshold value could be adjusted based on the number of observations and the dimensionality of the data. In the experiments of Lee et al., they generate input data uniformly and do not correlate the inputs. However, when input variables are correlated CNLS becomes easier to solve. Thus, in observed data where the inputs are typically highly correlated, the computational improvement will allow problems even larger than 1,000 observations to be solved.

  22. 22.

    Setting \(\delta_{i}\) to zero implies that the set V is empty and (3.8a, b, c) is solved with only the (3.8a) and (3.8c) constraints. V still grows via the addition of violated constraints in the algorithm.

  23. 23.

    Some preliminary test indicates that XA is very effective for solving CNLS problems.

  24. 24.

    For a more extensive summary, see Kuosmanen et al. (2014).

  25. 25.

    Also called “the no free lunch” axiom, it states that the production of positive output is impossible without the use of at least one input.

  26. 26.

    They limit their computational time to 5 h and use a GAMS/CPlex implementation.

  27. 27.

    Of course, CNLS (3.5) and (3.12) differ from DEA in that these methods account for noise; Sect. 3.6.2 describes the equivalence of CNLS and DEA under the deterministic assumption.

  28. 28.

    The DEA literature defines nonincreasing returns to scale and nondecreasing returns to scale production functions. Within CNLS, similar production functions can be estimated by imposing restrictions on the coefficients \(\alpha_{i}\)

    • Nonincreasing returns to scale (NIRS): impose \(\alpha_{i} \ge 0\,\forall \,i\)

    • Nondecreasing returns to scale (NDRS): impose \(\alpha_{i} \le 0\,\forall \,i\)

    .

  29. 29.

    Here, we construct a vector call it r, such that \(r_{i} = \ln y_{i} - \ln (\hat{\phi }_{i} )\), then r is regressed on z without an intercept term.

  30. 30.

    We do not advocate this solution to limited data. We see deterministic estimators as useful when the deterministic assumption is likely to hold.

  31. 31.

    In (3.18), since all of the \(\varepsilon_{i}^{\text{CNLS - }}\) are nonpositive, squaring the objective is simply a monotonic transformation, and thus, it is not necessary.

  32. 32.

    However, Stochastic semi-Nonparametric Envelopment of Data (StoNED) can be used.

  33. 33.

    The average value, \(\mu\), is typically a function of the parameters of the distribution of u. For example, if u is distributed half-normally, then \(E(u) = \sqrt {2/2\pi } \sigma_{u}\) where \(\sigma_{u}\) is the pretruncated standard deviation of u. More discussion related to this point is provided in Sect. 3.7.2.

  34. 34.

    Equations 3.24, 3.25, and 3.26 are shown as separate equations for ease of reading.

References

  • Afriat, S.N. 1967. The construction of a utility function from expenditure data. International Economic Review 8: 67–77.

    Article  Google Scholar 

  • Afriat, S.N. 1972. Efficiency estimation of production functions. International Economic Review 13(3): 568–598.

    Article  Google Scholar 

  • Aigner, D., and S. Chu. 1968. On estimating the industry production function. American Economic Review 58: 826–839.

    Google Scholar 

  • Aigner, D., C.A.K. Lovell, and P. Schmidt. 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6: 21–37.

    Article  Google Scholar 

  • Almanidis, P., and R.C. Sickles. 2011. The skewness issue in stochastic frontier models: Fact or fiction? In Exploring research frontiers in contemporary statistics and econometrics, ed. I. van Keilegom, and P.W. Wilson. Berlin: Springer.

    Google Scholar 

  • Alminidis, P., Qian, J., and Sickles, R. 2009. Stochastic Frontiers with bounded inefficiency. MIMEO, Rice University.

    Google Scholar 

  • Ayer, M., H.D. Brunk, G.M. Ewing, W.T. Reid, and E. Silverman. 1955. An empirical distribution function for sampling with incomplete information. Annals of Mathematical Statistics 26: 641–647.

    Article  Google Scholar 

  • Banker, R.D., and A. Maindiratta. 1992. Maximum likelihood estimation of monotone increasing and concave production frontiers. Journal of Productivity Analysis 3:401–416.

    Google Scholar 

  • Banker, R.D. 1993. Maximum likelihood, consistency and data envelopment analysis: A statistical foundation. Management Science 39: 1265–1273.

    Article  Google Scholar 

  • Banker, R.D., and R. Morey. 1986. Efficiency analysis for exogenously fixed inputs and outputs. Operations Research 34(4): 513–521.

    Article  Google Scholar 

  • Banker, R.D., A. Charnes, and W.W. Cooper. 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30(9): 1078–1092.

    Article  Google Scholar 

  • Barlow, R.E., D.J. Bartholomew, J.M. Bremner, and H.D. Brunk. 1972. Statistical inference under order restrictions; the theory and application of isotonic regression. New York: Wiley.

    Google Scholar 

  • Battese, G.E., and T.J. Coelli. 1995. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics 20(2): 325–332.

    Article  Google Scholar 

  • Bogetoft, P., and L. Otto. 2011. Benchmarking with DEA. Springer, New York: SFA and R.

    Google Scholar 

  • Brunk, H.D. 1955. Maximum likelihood estimates of monotone parameters. Annals of Mathematical Statistics 26: 607–616.

    Article  Google Scholar 

  • Carree, M.A. 2002. Technological inefficiency and the skewness of the error component in stochastic frontier analysis. Economics Letters 77: 101–107.

    Article  Google Scholar 

  • Charnes, A., W.W. Cooper, and E. Rhodes. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2: 429–444.

    Article  Google Scholar 

  • Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models. In: Handbook of Econometrics, eds. J. Heckman and E. Leamer , vol. 6. North Holland.

    Google Scholar 

  • Cobb, C.W., and P.H. Douglas. 1928. A theory of production. American Economic Review 18: 139–165.

    Google Scholar 

  • Coelli, T. 1995. Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis. Journal of Productivity Analysis 6: 247–268.

    Article  Google Scholar 

  • D’Agostino, R., and Pearson, E.S. (1973). Tests for departure from normality, empirical results for the distributions of b2 and \(\sqrt {b_{1} }\). Biometrika 60(3):613–622.

    Google Scholar 

  • Diewert, W.E., and T.J. Wales. 1987. Flexible functional forms and global curvature conditions. Econometrica 55(1): 43–68.

    Article  Google Scholar 

  • Du, P., C.F. Parmeter, and J.S. Racine. 2013. Nonparametric kernel regression with multiple predictors and multiple shape constraints. Statistica Sinica 23(3): 1347–1371.

    Google Scholar 

  • Fan, Y., Q. Li, and A. Weersink. 1996. Semiparametric estimation of stochastic production frontier models. Journal of Business and Economic Statistics 14: 460–468.

    Google Scholar 

  • Farrell, M.J. 1957. The measurement of productive efficiency. Journal of the Royal Statistical Society Series A120: 253–281.

    Article  Google Scholar 

  • Gabrielsen, A. (1975). On estimating efficient production functions. Working paper no. A-85, Chr. Michelsen Institute, Department of Humanities and Social Sciences, Bergen, Norway.

    Google Scholar 

  • Greene, W.H. 1980. Maximum likelihood estimation of econometric frontier functions. Journal of Econometrics 13: 26–57.

    Google Scholar 

  • Greene, W.H. 2008. The econometric approach to efficiency analysis. In The Measurement of productive efficiency and productivity growth, ed. H.O. Fried, C.A.K. Lovell, and S.S. Schmidt, 92–250. New York: Oxford University Press Inc.

    Chapter  Google Scholar 

  • Groeneboom, P., G. Jongbloed, and J.A. Wellner. 2001a. A canonical process for estimation of convex functions: the “invelope” of integrated Brownian motion +t^4. Annals of Statistics 29(6): 1653–1698.

    Article  Google Scholar 

  • Groeneboom, P., G. Jongbloed, and J.A. Wellner. 2001b. Estimation of a convex function: Characterizations and asymptotic theory. Annals of Statistics 29(6): 1620–1652.

    Article  Google Scholar 

  • Hackman, S.T. 2008. Production economics: Integrating the microeconomic and engineering perspectives. Heidelberg: Springer.

    Google Scholar 

  • Hannah, L.A., and D.B. Dunson. 2013. Multivariate convex regression with adaptive partitioning. Journal of Machine Learning Research 14: 3207–3240.

    Google Scholar 

  • Hanson, D.L., and G. Pledger. 1976. Consistency in concave regression. Annals of Statistics 4(6): 1038–1050.

    Article  Google Scholar 

  • Hildreth, C. 1954. Point estimates of ordinates of concave functions. Journal of the American Statistical Association 49: 598–619.

    Article  Google Scholar 

  • Johnson, A.L., and T. Kuosmanen. 2011. One-stage estimation of the effects of operational conditions and practices on productive performance: Asymptotically normal and efficient, root-n consistent StoNEZD method. Journal of Productivity Analysis 36(2): 219–230.

    Article  Google Scholar 

  • Jondrow, J., Lovell, C.A.K., Materov, I.S., and Schmidt, P. (1982). On estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics 19:233–238.

    Google Scholar 

  • Keshvari, A. (2014). An enhanced Fourier-Motzkin method for data envelopment analysis, Working paper.

    Google Scholar 

  • Keshvari, A., and T. Kuosmanen. 2013. Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation. European Journal of Operational Research 231: 481–491.

    Article  Google Scholar 

  • Kneip, A., and L. Simar. 1996. A general framework for frontier estimation with panel data. Journal of Productivity Analysis 7: 187–212.

    Article  Google Scholar 

  • Kumbhakar, S.C., and C.A.K. Lovell. 2000. Stochastic frontier analysis. New York: Cambridge University Press.

    Book  Google Scholar 

  • Kumbhakar, S.C., S. Ghosh, and J.T. McGuckin. 1991. A generalized production frontier approach for estimating determinants of inefficiency in U.S. dairy farms. Journal of Business and Economic Statistics 9(3): 279–286.

    Google Scholar 

  • Kumbhakar, C.S., B.U. Park, L. Simar, and E.G. Tsionas. 2007. Nonparametric stochastic frontiers: A local likelihood approach. Journal of Econometrics 137: 1–27.

    Article  Google Scholar 

  • Kuosmanen, T. 2008. Representation theorem for convex nonparametric least squares. Econometrics Journal 11: 308–325.

    Article  Google Scholar 

  • Kuosmanen, T. 2012. Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model. Energy Economics 34: 2189–2199.

    Article  Google Scholar 

  • Kuosmanen, T., and M. Fosgerau. 2009. Neoclassical versus frontier production models? Testing for the skewness of regression residuals. Scandinavian Journal of Economics 111(2): 351–367.

    Article  Google Scholar 

  • Kuosmanen, T., and A.L. Johnson. 2010. Data envelopment analysis as nonparametric least-squares regression. Operations Research 58: 149–160.

    Article  Google Scholar 

  • Kuosmanen, T., and M. Kortelainen. 2012. Stochastic non-smooth envelopment of data: Semi-parametric frontier estimation subject to shape constraints. Journal of Productivity Analysis 38(1): 11–28.

    Article  Google Scholar 

  • Kuosmanen, T., Johnson, A.L., and Saastamoinen, A. 2014. Stochastic nonparametric approach to efficiency analysis: A unified framework. In: Handbook on Data Envelopment Analysis, eds. J. Zhu, vol. II. Berlin: Springer.

    Google Scholar 

  • Lee, C.-Y., A.L. Johnson, E. Moreno-Centeno, and T. Kuosmanen. 2013. A more efficient algorithm for convex nonparametric least squares. European Journal of Operational Research 227(2): 391–400.

    Article  Google Scholar 

  • Meeusen, W., and J. Vandenbroeck. 1977. Efficiency estimation from cobb-douglas production functions with composed error. International Economic Review 18(2): 435–445.

    Article  Google Scholar 

  • Ondrich, J., and J. Ruggiero. 2001. Efficiency measurement in the stochastic frontier model. European Journal of Operational Research 129: 434–442.

    Article  Google Scholar 

  • Olesen, O.B., and J. Ruggiero. 2014. Maintaining the regular ultra passum law in data envelopment analysis. European Journal of Operational Research 235: 798–809.

    Article  Google Scholar 

  • Pitt, M.M., and L.F. Lee. 1981. Measurement and sources of technical inefficiency in the indonesian weaving industry. Journal of Development Economics 9: 43–64.

    Article  Google Scholar 

  • Ray, S.C. 1988. Data envelopment analysis nondiscretionary inputs and efficiency: An alternative interpretation. Socio-Economic Planning Science 22: 167–176.

    Article  Google Scholar 

  • Ray, S.C. 1991. Resource-use efficiency in public schools: A study of Connecticut data. Management Science 37: 1620–1628.

    Article  Google Scholar 

  • Ray, S. 2004. Data envelopment analysis: theory and techniques for economics and operations research. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reifschneider, D., and R. Stevenson. 1991. Systematic departures from the frontier: A framework for the analysis of firm inefficiency. International Economic Review 32: 715–723.

    Article  Google Scholar 

  • Robinson, M.P. 1988. Root-n-consistent semiparametric regression. Econometrica 56: 931–954.

    Article  Google Scholar 

  • Schmidt, P. 1985. Frontier production functions. Econometric Reviews 4(2): 289–328.

    Article  Google Scholar 

  • Schmidt, P., and T. Lin. 1984. Simple tests of alternative specifications in stochastic frontier models. Journal of Econometrics 24: 349–361.

    Article  Google Scholar 

  • Simar, L., and P.W. Wilson. 1998. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Management Science 44(1): 49–61.

    Article  Google Scholar 

  • Simar, L., and P.W. Wilson. 2000. A general methodology for bootstrapping in non-parametric frontier models. Journal of Applied Statistics 27(6): 779–802.

    Article  Google Scholar 

  • Simar, L., and P.W. Wilson. 2010. Inferences from cross-sectional, stochastic frontier models. Econometric Reviews 29(1): 62–98.

    Article  Google Scholar 

  • Stevenson, R.E. 1980. Likelihood functions for generalized stochastic frontier estimation. Journal of Econometrics 13(1): 57–66.

    Article  Google Scholar 

  • Timmer, C.P. 1971. Using a probabilistic frontier production function to measure technical efficiency. Journal of Political Economy 79: 767–794.

    Article  Google Scholar 

  • Varian, H.R. 1984. The nonparametric approach to production analysis. Econometrica 52: 579–598.

    Article  Google Scholar 

  • Wang, H., and P. Schmidt. 2002. One step and two step estimation of the effects of exogenous variables on technical efficiency levels. Journal of Productivity Analysis 18: 129–144.

    Article  Google Scholar 

  • Winsten, C.B. 1957. Discussion on Mr. Farrell’s paper. Journal of the Royal Statistical Society Series A 120(3): 282–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Johnson .

Editor information

Editors and Affiliations

Appendices

Appendix 1–Codes

GAMSCodeStandard Formulation

GAMSCodeCNLS+G

Matlab Code–Standard Formulation

Matlab Code–CNLS+G Formulation

Appendix 2

Data

 

OPEX

CAPEX

TOTEX

Energy

Length

Customers

PerUndGr

1

681

729

1612

75

878

4933

0.11

2

559

673

1659

62

964

6149

0.21

3

836

851

1708

78

676

6098

0.75

4

7559

8384

18918

683

12522

55226

0.13

5

424

562

1167

27

697

1670

0.03

6

1483

1587

3395

295

953

22949

0.65

7

658

570

1333

44

917

3599

0.11

8

1433

1311

3518

171

1580

11081

0.16

9

850

564

1415

98

116

377

1.00

10

1155

1108

2469

203

740

10134

0.64

11

14235

11594

28750

2203

7007

167239

0.61

12

44481

50321

117554

6600

67611

420473

0.23

13

1116

766

1925

117

436

7176

0.61

14

1604

946

2747

135

902

8614

0.46

15

27723

19818

48605

3601

6007

334757

0.92

16

2480

2420

5486

409

2773

14953

0.19

17

494

476

1091

43

506

3156

0.32

18

801

466

1297

61

541

4296

0.05

19

875

555

1691

62

1081

6044

0.07

20

2133

1913

4605

256

2540

23361

0.31

21

1139

1635

3102

197

1817

6071

0.05

22

907

1127

2260

200

1106

14936

0.49

23

120

106

341

17

133

772

0.06

24

3454

2428

6100

489

1312

44594

0.87

25

535

479

1440

53

789

3391

0.05

26

974

754

1958

95

971

6806

0.37

27

929

853

1976

75

869

5165

0.24

28

9842

13925

29722

985

25611

95367

0.09

29

548

412

1254

123

51

24

0.44

30

1456

1136

2665

165

875

14646

0.71

31

725

569

1376

73

716

5069

0.39

32

2525

388

3121

540

70

58

0.31

33

2002

1442

3864

300

1301

20325

0.47

34

1846

1112

3221

207

429

16878

0.73

35

982

1094

2561

99

1618

8566

0.20

36

2727

2151

5779

164

3330

12231

0.12

37

1799

2073

4380

171

3736

15217

0.06

38

604

675

1423

73

989

5711

0.25

39

400

430

907

40

646

2968

0.20

40

4092

3173

7915

482

3294

42952

0.40

41

3362

3078

6639

456

1375

48140

0.66

42

390

438

868

23

589

2227

0.18

43

10852

9366

25556

1233

12512

98650

0.13

44

688

700

1540

85

866

6022

0.36

45

761

701

1564

100

800

7193

0.40

46

453

576

1229

25

1078

3342

0.04

47

4076

4007

9807

494

4696

43911

0.29

48

308

297

669

17

432

1752

0.03

49

2746

2529

6097

315

4042

26265

0.20

50

5614

5509

12154

1042

4296

75870

0.60

51

400

519

1186

39

614

2211

0.01

52

1821

1753

4020

223

2117

12945

0.09

53

794

747

1589

98

418

5146

0.66

54

2269

2795

6414

348

2127

21072

0.37

55

711

556

1515

77

762

4513

0.16

56

4609

5342

10600

993

3205

80702

0.70

57

1766

2338

5431

402

3207

25994

0.13

58

813

666

1872

130

905

5394

0.19

59

884

1104

2206

138

1423

9015

0.26

60

1662

1358

3767

117

2532

9930

0.24

61

81

106

268

22

133

1467

0.22

62

11776

11864

28295

988

20934

84445

0.04

63

4021

3767

9689

749

3225

47572

0.53

64

2597

3224

7226

378

3567

30801

0.21

65

995

848

1871

95

340

7812

0.89

66

548

587

1280

43

977

4272

0.02

67

1573

1780

3539

237

882

19455

0.52

68

4129

4001

9853

440

6330

26798

0.22

69

2151

1450

3758

266

772

21662

0.83

70

2438

2496

5499

316

4117

22313

0.28

71

14064

15175

37368

1601

24485

106336

0.08

72

2058

1521

3735

268

928

19899

0.74

73

8643

6819

16141

1654

3567

124661

0.59

74

483

367

987

37

730

2611

0.08

75

1018

939

2067

158

822

10537

0.56

76

1593

2326

5105

196

3470

13391

0.09

77

7501

4734

12687

1141

2360

67456

0.62

78

305

411

861

19

520

1207

0.17

79

5426

6446

12831

787

5808

60239

0.41

80

2618

2795

6055

293

3741

23446

0.20

81

1033

951

2156

137

902

11654

0.39

82

6786

6638

13794

1281

3009

93769

0.75

83

2169

2172

5054

210

3693

17129

0.16

84

40787

45434

108310

4825

60659

378089

0.18

85

2741

2475

6162

310

3381

19059

0.16

86

307

225

594

28

351

2078

0.07

87

321

281

672

30

338

2008

0.32

88

300

289

616

15

318

1364

0.01

89

891

693

1776

105

575

9084

0.59

Estimated residuals

 

Resid

1

−2.93

2

1.30

3

−22.31

4

−350.89

5

−13.46

6

100.99

7

−29.04

8

−14.06

9

−1.00

10

56.88

11

285.52

12

679.39

13

−20.31

14

−70.03

15

10.52

16

74.58

17

−6.73

18

−30.25

19

−40.29

20

−27.80

21

48.75

22

87.00

23

26.07

24

23.93

25

−2.33

26

−22.94

27

−37.94

28

−351.05

29

66.65

30

−21.72

31

−9.11

32

215.96

33

37.57

34

−31.84

35

−23.79

36

−201.37

37

−69.31

38

6.13

39

3.56

40

−74.62

41

−1.99

42

−12.15

43

−236.73

44

6.44

45

11.53

46

−19.80

47

−67.22

48

−5.47

49

−55.97

50

265.53

51

2.17

52

−17.68

53

4.54

54

38.84

55

−3.07

56

349.55

57

163.97

58

34.87

59

28.38

60

−99.16

61

33.36

62

−604.02

63

197.10

64

21.41

65

−26.83

66

−15.29

67

29.36

68

−128.27

69

−16.48

70

−13.41

71

−293.84

72

−2.58

73

476.64

74

−10.02

75

32.04

76

−17.26

77

114.79

78

−3.54

79

35.42

80

−62.95

81

8.88

82

349.42

83

−80.72

84

−604.75

85

−59.86

86

6.47

87

5.94

88

−6.29

89

−1.01

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Johnson, A.L., Kuosmanen, T. (2015). An Introduction to CNLS and StoNED Methods for Efficiency Analysis: Economic Insights and Computational Aspects. In: Ray, S., Kumbhakar, S., Dua, P. (eds) Benchmarking for Performance Evaluation. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2253-8_3

Download citation

Publish with us

Policies and ethics