Skip to main content

Toward Digital and Image-Based Phenotyping

  • Chapter
  • First Online:
Phenomics in Crop Plants: Trends, Options and Limitations

Abstract

Manually performed measurements in field phenotyping are labor- and time-consuming, often destructive and not objective. Moreover, the complexity and variability of crop plants under field conditions require high-resolution data and filtering. As a consequence, there is a need for spatially and temporally differentiated data, objective data acquisition, and high-throughput technologies. Image-based systems, selective on morphological and spectral crop characteristics, are adequate sensors for further interpretation of raw data in terms of crop properties. In particular multi-sensor and data fusion has a potential to compensate the varying influences of sunlight, dust, moisture, or uneven land in the field. Due to the high-resolution data of image-based systems – such as digital color cameras, spectral imaging, laser scanning devices, or 3D cameras – detailed crop properties have become available, even individual plant phenotyping is an option. Autonomous field robots have a high potential for field phenotyping as well as new sensor technologies and virtual phenotyping. Data management is of relevance for field phenotyping, starting from storing the large amounts of raw data up to artificial intelligence algorithms for trait determination. Interdisciplinary cooperation is crucial for the implementation of digital phenotyping into practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anys H, He D-C (1995) Evaluation of textural and multipolarization radar features for crop classification. Geosci Remote Sens 33:1170–1181, IEEE Transactions on

    Article  Google Scholar 

  • Auernhammer H (2001) Precision farming – the environmental challenge. Comput Electron Agric 30(1–3):S 31–S 43

    Article  Google Scholar 

  • Billiau K, Sprenger H, Schudoma C, Walther D, Köhl K (2012) Data management pipeline for plant phenotyping in a multisite project. Funct Plant Biol 39:948–957

    Article  Google Scholar 

  • Breitenstein B, Scheller M, Shakfa MK, Kinder T, Müller-Wirts T, Koch M, Selmar D (2011) Introducing terahertz technology into plant biology: a novel method to monitor changes in leaf water status. J Appl Bot Food Qual 84:158–161

    Google Scholar 

  • Busemeyer L (2013) Development and assessment of a multi-sensor platform for precision phenotyping of small grain cereals under field conditions. Dissertation, thesis, University of Hohenheim, Germany

    Google Scholar 

  • Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer HP, Reif JC, Würschum T, Müller J, Rahe F, Ruckelshausen A (2013a) BreedVision – a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 13:2830–2847

    Article  PubMed Central  PubMed  Google Scholar 

  • Busemeyer L, Ruckelshausen A, Möller K, Melchinger AE, Alheit K, Maurer HP, Hahn V, Weissman EA, Reif JC, Würschum T (2013b) Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation. Sci Rep 3:3442

    Article  Google Scholar 

  • Chen YR, Chao K, Kim MS (2002) Machine vision technology for agricultural applications. Comput Electron Agric 36:173–191

    Article  Google Scholar 

  • Claas KGaA mbh (2013) http://www.claas.de/produkte/easy/lenksysteme/optische-lenksysteme/laser-pilot. Accessed 27 Sept 2013

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed Central  PubMed  Google Scholar 

  • Comar A, Burger P, de Solan B, Baret F, Daumard F, Hanocq JF (2012) A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: description and first results. Funct Plant Biol 39(11):914–924

    Article  Google Scholar 

  • Darrigues A, Hall J, van der Knaap E, Francis DM (2008) Tomato analyzer-color test: a new tool for efficient digital phenotyping. J Am Soc Hortic Sci 133:579–586

    Google Scholar 

  • Davies ER (2012) Computer and machine vision: theory, algorithms, practicalities. Academic Press, Amsterdam/Boston/Heidelberg/London/New York/Oxford/Paris/San Diego/San Francisco/Singapore/Sydney/Tokyo

    Google Scholar 

  • Donnison IS, Farrar K, Allison GG, Hodgson E, Adams J, Hatch R, Gallagher JA, Robson PR, Clifton-Brown JC, Morris P (2009) Functional genomics of forage and bioenergy quality traits in the grasses. In: Yamada T, Spangenberg G (eds) Molecular breeding of forage and turf. Springer, New York, pp 111–124

    Chapter  Google Scholar 

  • Dzinaj T, Kleine Hörstkamp S, Linz A, Ruckelshausen A, Böttger O, Kemper M, Marquering J, Naescher J, Trautz D, Wisserodt E (1998) Multi-sensor-system zur unterscheidung von nutzpflanzen und beikräutern. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, Sonderheft XVI:233–242

    Google Scholar 

  • Eberius M, Lima-Guerra J (2009) High-throughput plant phenotyping – data acquisition, transformation, and analysis. In: Edwards D, Stajich J, Hansen D (eds) Bioinformatics – tools and applications. Springer, New York, pp 259–278

    Google Scholar 

  • Egbers M, Kronsbein CF, Ruckelshausen A (2006) Der Reifegrad bestimmt die Häcksellänge. Landtechnik 61:S.136–S.137

    Google Scholar 

  • Fender F, Hanneken M, Linz A, Ruckelshausen A, Spicer M (2005) Imaging for crop detection based on light curtains and multispectral cameras. Bornimer Agrartechnische Berichte, Heft 40:7–16

    Google Scholar 

  • Fender F, Hanneken M, In der Stroth S, Kielhorn A, Linz A, Ruckelshausen A (2006) Sensor fusion meets gps: individual plant detection. Proceedings of CIGR EurAgEng/VDI-MEG, pp 279–280

    Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    Article  CAS  PubMed  Google Scholar 

  • Fossati A, Gall J, Grabern H, Konolige K, Ren X (2013) Consumer depth cameras for computer vision. Springer, London/Heidelberg/New York/Dordrecht

    Google Scholar 

  • Gebbers R, Ehlert D, Adamek R (2011) Rapid mapping of the leaf area index in agricultural crops. Agron J 103:1532

    Article  Google Scholar 

  • Gente R, Born N, Voß N, Sannemann W, Léon J, Koch M, Castro-Camus E (2013) Determination of leaf water content from terahertz time-domain spectroscopic data. J Infrared Millimeter Terahertz Waves 34:316–323

    Article  Google Scholar 

  • Gerhards R, Sökefeld M, Kühbauch W (1998) Einsatz der digitalen Bildverarbeitung bei der teilschlagspezifischen Unkrautkontrolle. Z PflKrankh PflSchutz Sonderh XVI:273–278

    Google Scholar 

  • Geya Y, Kimura T, Fujisaki H, Terada Y, Kose K, Haishi T (2013) Longitudinal NMR parameter measurements of Japanese pear fruit during the growing process using a mobile magnetic resonance imaging system. J Magn Reson 226:45–51

    Article  CAS  PubMed  Google Scholar 

  • Griepentrog H-W, Ruckelshausen A, Jörgensen RN, Lund I (2010) Autonomous systems for plant protection. In: Oerke E-C, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection – the challenge and use of heterogeneity. Springer, Dordrecht/Heidelberg/London/New York, pp 323–334

    Google Scholar 

  • Haralick RM (1976) Automatic remote sensor image processing. Top Appl Phys 11:5–63, Digital picture analysis

    Article  Google Scholar 

  • Hellebrand HJ, Beuche H, Dammer KH (2002) Sensor requirements in precision farming. Sci Agric Bohem 33:3

    Google Scholar 

  • International Plant Phenotyping Network (2013) IPPN. http://www.plantphenomics.com/. Accessed 27 Sept 2013

  • Kipp S, Mistele B, Baresel P, Schmidhalter U (2014) High-throughput phenotyping early plant vigour of winter wheat. Eur J Agron 52:271–278

    Article  Google Scholar 

  • Klose R, Möller K, Vielstädte C, Ruckelshausen A (2010) Modular system architecture for individual plant phentotyping with an autonomous field robot. In: Proceedings of the 2nd international conference on machine control & guidance, Bonn, pp 299–307

    Google Scholar 

  • Klose R, Scholz C, Ruckelshausen A (2012) 3D time-of-flight camera-based sensor system for automatic crop height monitoring for plant phenotyping. In: Proceedings CIGR-AgEng 2012 conference, automation technology for off-road equipment, Valencia, pp 55–60

    Google Scholar 

  • Konstantinovic M, Wöckel S, Schulze Lammers P, Sachs J, Martinov M (2007) Detection of root biomass using ultra wideband radar – an approach to potato nest positioning. Agricultural Engineering International, vol 9, Manuscript IT 06 003. cigr-ejournal.tamu.edu

    Google Scholar 

  • Landgrebe DA, Phillips TL (1967) A multichannel image data handling system for agricultural remote sensing. In: Proceedings of SPIE 0010, computerized imaging techniques 136. doi:10.1117/12.946705

  • LemnaTec GmbH (2013) http://www.lemnatec.com/. Accessed 27 Sept 2013

  • Li Y, Chen D, Walker C, Angus J (2010) Estimating the nitrogen status of crops using a digital camera. Field Crop Res 118:221–227

    Article  Google Scholar 

  • Link A, Reusch S (2006) Implementation of site-specific nitrogen application—status and development of the YARA N-Sensor. Nordic Assoc Agric Sci NJF Rep 390:37–41

    Google Scholar 

  • Makeen K, Kerssen S, Mentrup D, Oelmann B, Ruckelshausen A (2012) Multiple reflection ultrasonic sensor system for morphological plant parameters. Bornimer Agrartechnische Ber 78:S. 110–S. 116, Heft

    Google Scholar 

  • Medusa Systems BV (2013) http://www.medusa-systems.com/. Accessed 27 Sept 2013

  • Mistele B, Schmidhalter U (2010) Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat. Agron J 102:499–506

    Article  CAS  Google Scholar 

  • Mitchell HB (2007) Multi-sensor data fusion. Springer, Berlin, p 281

    Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    Article  CAS  PubMed  Google Scholar 

  • Montes JM, Technow F, Dhillon BS, Mauch F, Melchinger AE (2011) High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crop Res 121(2):268–273

    Article  Google Scholar 

  • Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114:358–371

    Article  Google Scholar 

  • Oerke EC, Gerhards R, Menz G, Sikora RA (2010) Precision crop protection–the challenge and use of heterogeneity. Springer, Dordrecht/Heidelberg/London/New York

    Google Scholar 

  • Pan G, Li FM, Sun GJ (2007) Digital camera based measurement of crop cover for wheat yield prediction. In: Geoscience and remote sensing symposium, 2007. IGARSS 2007, Barcelona. IEEE International. IEEE, pp 797–800

    Google Scholar 

  • Perez-Elias MJ, Garcia-Arota I, Muñoz V, Santos I, Sanz J, Abraira V, Arribas JR, González J, Moreno A, Dronda F, Antela A, Pumares M, Martí-Belda P, Casado JL, Geijos P, Moreno S (2003) Phenotype or virtual phenotype for choosing antiretroviral therapy after failure: a prospective, randomized study. Antivir Ther 8:577–584

    CAS  PubMed  Google Scholar 

  • PhenoFab Europe (2013) http://www.phenofab.com/. Accessed 27 Sept 2013

  • Poorter H, Niinemets Ü, Walter A, Fiorani F, Schurr U (2010) A method to construct dose–response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. J Exp Bot 61:2043–2055

    Article  CAS  PubMed  Google Scholar 

  • Preckwinkel J, Thösink G, Linz A, Marquering J, Ruckelshausen A (2004) Method for opto-electronic on-line measurement of crop density in site-specific farming. Bornimer Agrartechnische Berichte, Heft 37:S.153–S.158

    Google Scholar 

  • Reusch S (2009) Use of ultrasonic transducers for on-line biomass estimation in winter wheat. Proc Precis Agric 9:169–175

    Google Scholar 

  • Robot Operating System ROS.org. http://wiki.ros.org//. Accessed 27 Sept 2013

  • Ruckelshausen A, Dzinaj T, Gelze F, Kleine-Horstkamp SLA (1999) Microcontroller-based multi-sensor system for online crop/weed detection. In: Weeds. Proceedings of an international conference, Brighton, UK, 15–18 Nov 1999, pp 601–606

    Google Scholar 

  • Ruckelshausen A, Biber P, Dorna M, Gremmes H, Klose R, Linz A, Rahe F, Resch R, Thiel M, Weiss DU (2009) BoniRob–an autonomous field robot platform for individual plant phenotyping. Precis Agric 9:841

    Google Scholar 

  • Schulz H, Postma J, van Dusschoten D, Scharr H, Behnke S (2013) Plant root system analysis from MRI images. Commun Comput Inform Sci 359:411–425

    Article  Google Scholar 

  • Thomas E (2006) Feldversuchswesen. Verlag Eugen Ulmer, Stuttgart, 387 pp

    Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT press, Cambridge, p 667

    Google Scholar 

  • Tsukor V, Klose R, Ruckelshausen A (2012) Multi-sensor simulation method for outdoor plant phenotyping based on autonomous field robots. Proceedings CIGR-AgEng conference, Valencia, 9–12 July 2012

    Google Scholar 

  • van Egmond FM, Loonstra EH, Limburg J (2010) Gamma ray sensor for topsoil mapping: the mole. Prog Soil Sci 1:323–332

    Google Scholar 

  • Windt C, Blümler P (2013) Using portable NMR to measure sap flow and water in the intact plant. Acta Horticult 991:115–122

    Google Scholar 

  • Wunder E, Kielhorn A, Klose R, Thiel M, Ruckelshausen A (2012) GIS- and sensor-based technologies for individual plant agriculture. Landtechnik 67:37–41

    Google Scholar 

  • Zhang N, Chaisattapagon C (1995) Effective criteria for weed identification in wheat fields using machine vision. Trans ASAE 38:965–974

    Article  Google Scholar 

  • Zude M (2013) Proceedings of the 2nd workshop on unmanned autonomous aerial vehicles (UAV), Bornimer Agrartechnische Berichte, Heft 81. Leibniz-Institut für Agrartechnik Potsdam-Bornim, Berlin

    Google Scholar 

Download references

Acknowledgments

The research project “BoniRob” was funded by the Ministry of Food, Agriculture and Consumer Protection (BMELV) and by the Federal Office for Agriculture and Food (BLE). The research project “BreedVision” was funded by the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Ruckelshausen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Ruckelshausen, A., Busemeyer, L. (2015). Toward Digital and Image-Based Phenotyping. In: Kumar, J., Pratap, A., Kumar, S. (eds) Phenomics in Crop Plants: Trends, Options and Limitations. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2226-2_4

Download citation

Publish with us

Policies and ethics