Skip to main content

Plant Proteomics: Technologies and Applications

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Proteomics is generally defined as the simultaneous and high-throughput study of protein expression profiles in cells, tissues, organs and organisms. It is a relatively new scientific discipline which has developed highly significantly over the last decade and is now recognised as one of the most important tools used in the identification and characterisation of proteins or genes of interest. The researchers have turned to proteomics to study gene products and validate their predicted functions because the availability of the complete genome sequences of a variety of organisms itself is not sufficient to find out biological function. Proteomic data for an experiment includes quantitative expression profiles, profiles of posttranslational modifications (PTMs) and protein interaction networks and linking these towards the understanding of molecular mechanisms associated with endogenous and exogenous cues. The major application of proteomics technologies is to advance our knowledge in crop plant for their development, abiotic and biotic stress tolerance, PTMs and unravelling signal transduction cascades. Further, an in-depth comparative proteome study of subcellular organelles could provide more detailed information about the intrinsic mechanism of developmental or stress response. The success in proteomics research is attributed to advances in various technology platforms associated with MS-based techniques. The accurate quantitation of proteins and peptides in complex biological systems is one of the most challenging areas of proteomics. The discoveries aimed at improving sensitivity, and throughput of both mass analysers and fragmentation technology enabled mass spectrometry (MS)-based proteomics to become the mainstream method for the large-scale analysis of complex proteomes. Along with recent and ongoing improvements in liquid separation technologies and algorithms for protein/peptide identification, MS-based proteomics has become a powerful and valuable analytical tool to study highly complex and dynamic biological systems. In this chapter, we describe the recent progress in plant proteomics and highlight the achievements made in understanding the proteomes of major research area of plant biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice sheath. Proteomics 4:2072–2081

    CAS  PubMed  Google Scholar 

  • Abdalla KO, Rafudeen MS (2012) Analysis of the nuclear proteome of the resurrection plant Xerophyta viscosa in response to dehydration stress using iTRAQ with 2DLC and tandem mass spectrometry. J Proteomics 18:2361–2374

    Google Scholar 

  • Abdalla KO, Baker B, Rafudeen MS (2010) Proteomic analysis of nuclear proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Growth Regul 62:279–292

    CAS  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    CAS  PubMed  Google Scholar 

  • Aebersold RH, Leavitt J, Saavedra RA, Hood LE, Kent SB (1987) Internal amino acid sequence analysis of proteins separated by one or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci USA 84:6970–6974

    PubMed Central  CAS  PubMed  Google Scholar 

  • Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N (2008) Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 7:3803–3817

    CAS  PubMed  Google Scholar 

  • Agrawal L, Narula K, Basu S, Shekhar S, Ghosh S, Datta A, Chakraborty N, Chakraborty S (2013) Comparative proteomics reveals a role for seed storage protein, AmA1 in cellular growth, development and nutrient accumulation. J Proteome Res. doi:10.1021/pr4007987

    PubMed  Google Scholar 

  • Ahn NG, Shabb JB, Old WM, Resing KA (2007) Achieving in-depth proteomics profiling by mass spectrometry. ACS Chem Biol 2:39–52

    CAS  PubMed  Google Scholar 

  • Ahsan N, Komatsu S (2009) Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics 9:4889–4907

    CAS  PubMed  Google Scholar 

  • Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS et al (2007) A comparative proteomic analysis of tomato leaves in response to water logging stress. Physiol Plant 131:555–570

    CAS  PubMed  Google Scholar 

  • Ahsan N, Nanjo Y, Sawada H, Kohno Y, Komatsu S (2010) Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics 10:2605–2619

    CAS  PubMed  Google Scholar 

  • Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H et al (2010a) Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. J Biosci 35:49–62

    CAS  PubMed  Google Scholar 

  • Alam I, Sharmin SA, Kim KH, Yang JK, Choi MS, Lee BH (2010b) Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil 333:491–505

    CAS  Google Scholar 

  • Alkhalfioui F, Renard M, Vensel WH, Wong J et al (2007) Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. Plant Physiol 144:1559–1579

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amey RC, Schleicher T, Slinn A, Lewis M et al (2008) Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur J Plant Pathol 122:41–55

    CAS  Google Scholar 

  • Amme S, Matros A, Schlesier B, Mock HP (2006) Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J Exp Bot 57:1537–1546

    CAS  PubMed  Google Scholar 

  • Amster IJ (1996) Fourier transform mass spectrometry. J Mass Spectrom 31:1325–1337

    CAS  Google Scholar 

  • Andersen JS, Mann M (2000) Functional genomics by mass spectrometry. FEBS Lett 480:25–31

    CAS  PubMed  Google Scholar 

  • Ansong C, Purvine SO, Adkins JN, Lipton MS, Smith RD (2008) Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Brief Funct Genomic Proteomics 7(1):50–62

    CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. doi:10.1038/35048692

  • Baba A, Nogueira F, Pinheiro C, Brasil J, Jereissati E, Jucá T et al (2008) Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta). Plant Sci 175:717–723

    CAS  Google Scholar 

  • Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36:652–663

    CAS  PubMed  Google Scholar 

  • Balbuena TS, Silveira V, Junqueira M, Dias LLC, Santa-Catarina C, Shevchenko A et al (2009) Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian pine (Araucaria angustifolia). J Proteomics 72:337–352

    CAS  PubMed  Google Scholar 

  • Baudet M, Ortet P, Gaillard JC, Fernandez B et al (2009/2010) Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwanted use of non-canonical translation initiation codons. Mol Cell Proteomics 9(2):415

    Google Scholar 

  • Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL et al (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    CAS  PubMed  Google Scholar 

  • Beavis RC, Chait BT (1996) Matrix-assisted laser desorption ionization mass spectrometry of proteins. Method Enzymol 270:519–551, Chap. 22

    Google Scholar 

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR et al (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    CAS  PubMed  Google Scholar 

  • Bhushan D, Pandey A, Chattopadhyay A, Choudhary MK, Chakraborty S, Datta A, Chakraborty N (2006) Extracellular matrix proteome of chickpea (Cicer arietinum L.) illustrates pathway abundance, novel protein functions and evolutionary perspect. J Proteome Res 5:1711–1720

    CAS  PubMed  Google Scholar 

  • Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6:1868–1884

    CAS  PubMed  Google Scholar 

  • Bi Y, Wei Z, Shen Z, Lu T, Cheng Y, Wang B et al (2010) Comparative temporal analyses of the Pinus sylvestris L. var. mongolica litv. apical bud proteome from dormancy to growth. Mol Biol Rep 38:721–729

    PubMed  Google Scholar 

  • Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127

    CAS  PubMed  Google Scholar 

  • Bogeat-Triboulot MB, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P et al (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonardi V, Pesaresi P, Becker T, Schleiff E et al (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182

    CAS  PubMed  Google Scholar 

  • Bonhomme L, Monclus R, Vincent D, Carpin S, Lomenech AM, Plomion C et al (2009) Leaf proteome analysis of eight Populus × euramericana genotypes: genetic variation in drought response and in water-use efficiency involves photosynthesis-related proteins. Proteomics 9:4121–4142

    CAS  PubMed  Google Scholar 

  • Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A et al (2005) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5:212–221

    CAS  PubMed  Google Scholar 

  • Boudsocq M, Droillard MJ, Barbier-Brygoo H, Lauriere C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63:491–503

    CAS  PubMed  Google Scholar 

  • Briceno Z, Almagro L, Sabater-Jara AB, Calderon AA, Pedreno MA, Ferrer MA (2012) Enhancement of phytosterols, taraxasterol and induction of extracellular pathogenesis-related proteins in cell cultures of Solanum lycopersicum cv Micro-Tom elicited with cyclodextrins and methyl jasmonate. J Plant Physiol 169:1050–1058

    CAS  PubMed  Google Scholar 

  • Brugiere S, Kowalski S, Ferro M, Seigneurin-Berny D, Miras S, Salvi D, Ravanel S, d’Herin P, Garin J, Bourguignon J, Joyard J, Rolland N (2004) The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochemistry 65:1693–1707

    CAS  PubMed  Google Scholar 

  • Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A (2008) Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 391:381–390

    CAS  PubMed  Google Scholar 

  • Casasoli M, Spadoni S, Lilley KS, Cervone F et al (2008) Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in Arabidopsis thaliana. Proteomics 8:1042–1054

    CAS  PubMed  Google Scholar 

  • Cecconi D, Orzetti S, Vandelle E, Rinalducci S et al (2009) Protein nitration during defense response in Arabidopsis thaliana. Electrophoresis 30:2460–2468

    CAS  PubMed  Google Scholar 

  • Celis JE, Kruhoffer M, Gromova I, Frederiksen C, Ostergaard M, Thykjaer T, Gromov P, Yu J, Palsdottir H, Magnusson N, Ornoft TF (2000) Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett 480:2–16

    CAS  PubMed  Google Scholar 

  • Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH et al (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125

    CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A et al (2009) Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 60:4221–4234

    CAS  PubMed  Google Scholar 

  • Chan J, Calder G, Fox S, Lloyd C (2007) Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyls epidermal cells. Nat Cell Biol 9:171–175

    CAS  PubMed  Google Scholar 

  • Chang IF, Curran A, Woolsey R, Quilici D et al (2009) Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9:2967–2985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    CAS  PubMed  Google Scholar 

  • Chen Y, Chen T, Shen S, Zheng M, Guo Y, Lin J et al (2006) Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant J 47:174–195

    CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W (2009a) Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol Biochem 47(5):407–415

    CAS  PubMed  Google Scholar 

  • Chen XY, Kim ST, Cho WK, Rim Y, Kim S, Kim SW et al (2009b) Proteomics of weakly bound cell wall proteins in rice calli. J Plant Physiol 166:675–685

    CAS  PubMed  Google Scholar 

  • Chen Y, Hoehenwarter W, Weckwerth W (2010) Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant J 63:1–17

    Google Scholar 

  • Cheng FY, Blackburn K, Lin YM, Goshe MB, Williamson JD (2009a) Absolute protein quantification by LC/MS (E) for global analysis of salicylic acid-induced plant protein secretion responses. J Proteome Res 8:82–93

    CAS  PubMed  Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X et al (2009b) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9:3100–3114

    CAS  PubMed  Google Scholar 

  • Cheng L, Gao X, Li S, Shi M, Javeed H, Jing X et al (2010) Proteomic analysis of soybean [Glycine max (L.) Meer.] seeds during imbibition at chilling temperature. Mol Breed 26:1–17

    CAS  Google Scholar 

  • Chiappetta G, Corbo C, Palmese A, Marino G, Amoresano A (2009) Quantitative identification of protein nitration sites. Proteomics 9:1524–1537

    CAS  PubMed  Google Scholar 

  • Chitteti BR, Peng ZH (2007a) Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis. Proteomics 7:1473–1500

    CAS  PubMed  Google Scholar 

  • Chitteti BR, Peng ZH (2007b) Proteome and phosphor proteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    CAS  PubMed  Google Scholar 

  • Chitteti BR, Tan F, Mujahid H, Magee BG, Bridges SM, Peng Z (2008) Comparative analysis of proteome differential regulation during cell dedifferentiation in Arabidopsis. Proteomics 8:4303–4316

    CAS  PubMed  Google Scholar 

  • Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu XL, Knox JP et al (2002) Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23:1754–1765

    CAS  PubMed  Google Scholar 

  • Chivasa S, Simon WJ, Yu X-L, Yalpani N, Slabas AR (2005) Pathogen elicitor-induced changes in the maize extra cellular matrix proteome. Proteomics 5:4894–4904

    CAS  PubMed  Google Scholar 

  • Cho WK, Chen XY, Chu H, Rim Y, Kim S, Kim ST et al (2009) Proteomic analysis of the secretome of rice calli. Physiol Plant 135:331–341

    CAS  PubMed  Google Scholar 

  • Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8:1579–1598

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christendat D, Yee A, Dharamsi A, Kluger Y, Gerstein M, Arrowsmith CH, Edwardsa AM (2000) Structural proteomics: prospects for high throughput sample preparation. Prog Biophys Mol Biol 73:339–345

    CAS  PubMed  Google Scholar 

  • Cooper B, Campbell KB, Feng J, Garrett WM, Frederick R (2011) Nuclear proteomic changes linked to soybean rust resistance. Mol Biosyst 3:773–783

    Google Scholar 

  • Corpillo D, Gardini G, Vaira AM, Basso M, Aime S, Accotto GR et al (2004) Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: the case of a virus-resistant tomato. Proteomics 4:193–200

    CAS  PubMed  Google Scholar 

  • Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21:1104–1115

    CAS  PubMed  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    CAS  PubMed  Google Scholar 

  • Cumming RC, Andon NL, Haynes PA, Park M et al (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758

    CAS  PubMed  Google Scholar 

  • Dahal D, Pich A, Braun HP, Wydra K (2010) Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant Mol Biol 73:643–658

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dai S, Wang T, Yan X, Chen S (2007) Proteomics of pollen development and germination. J Proteome Res 6:4556–4563

    CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43:883–898

    CAS  PubMed  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RRD (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    CAS  PubMed  Google Scholar 

  • Davis JR, Kakar M, Lim CS (2007) Controlling protein compartmentalization to overcome disease. Pharm Res 24(1):17–27

    CAS  PubMed  Google Scholar 

  • De Jong F, Mathesius U, Imin N, Rolfe BG (2007) A proteome study of the proliferation of cultured Medicago truncatula protoplasts. Proteomics 7:722–736

    PubMed  Google Scholar 

  • Degand H, Faber AM, Dauchot N, Mingeot D, Watillon B, VanCutsem P et al (2009) Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics 9:2903–2907

    CAS  PubMed  Google Scholar 

  • De-la-Pena C, Lei Z, Watson BS, Sumner LW, Vivanco J (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25455

    Google Scholar 

  • Deytieux C, Geny L, Lapaillerie D, Claverol S, Bonneu M, Doneche B (2007) Proteome analysis of grape skins during ripening. J Exp Bot 58:1851–1862

    CAS  PubMed  Google Scholar 

  • DiCarli M, Villani ME, Renzone G, Nardi L, Pasquo A, Franconi R et al (2009) Leaf proteome analysis of transgenic plants expressing antiviral antibodies. J Proteome Res 8:838–848

    CAS  Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM, Edwards R (2005) Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138:2233–2244

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Zaiee A, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    CAS  PubMed  Google Scholar 

  • Drumm ML, Collins FS (1993) Molecular biology of cystic fibrosis. Mol Genet Med 3:33–68

    CAS  PubMed  Google Scholar 

  • Dunkley TPJ, Watson R, Griffin JL, Dupree P, Lilley KS (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3:1128–1134

    CAS  PubMed  Google Scholar 

  • Dunn JD, Reid GE, Bruening ML (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev 29:29–54

    CAS  PubMed  Google Scholar 

  • Edwards AM, Arrowsmith CH, Christendat D, Dharamsi A, Friesen JD, Greenblatt JF, Vedadi M (2000) Protein production: feeding the crystallographers and NMR spectroscopists. Nat Struct Biol 7(Suppl):970–972

    Google Scholar 

  • Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823–826

    CAS  PubMed  Google Scholar 

  • Eisenstein E, Gilliland GL, Herzberg O, Moult J, Orban J, Poljak RJ, Banerjei L, Richardson D, Howard AJ (2000) Biological function made crystal clear annotation of hypothetical proteins via structural genomics. Curr Opin Biotechnol 11:25–30

    CAS  PubMed  Google Scholar 

  • El-Khatib RT, Good AG, Muench DG (2007) Analysis of the Arabidopsis cell suspension phosphoproteome in response to short-term low temperature and abscisic acid treatment. Physiol Plant 129:687–697

    CAS  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829. doi:10.1104/pp. 108.129999

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    CAS  PubMed  Google Scholar 

  • Ferreira S, Hjernø K, Larsen M, Wingsle G, Larsen P, Fey S et al (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361–377

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferri M, Tassoni A, Franceschetti M, Righetti L et al (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9:610–624

    CAS  PubMed  Google Scholar 

  • Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer L, Lipavska H, Hausman J, Opatrny Z (2008) Morphological and molecular characterization of a spontaneously tuberizing potato mutant: an insight into the regulatory mechanisms of tuber induction. BMC Plant Biol 8:117–130

    PubMed Central  PubMed  Google Scholar 

  • Fu CX, Hu J, Liu T, Ago T et al (2008) Quantitative analysis of redox-sensitive proteome with DIGE and ICAT. J Proteome Res 7:3789–3802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fukao Y (2012) Protein–protein interactions in plants. Plant Cell Physiol 53(4):617–625

    CAS  PubMed  Google Scholar 

  • Gao F, Zhou Y, Zhu W, Li X, Fan L, Zhang G (2009a) Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta 230:1033–1046

    CAS  PubMed  Google Scholar 

  • Gao XH, Bedhomme M, Veyel D, Zaffagnini M, Lemaire SD (2009b) Methods for analysis of protein glutathionylation and their application to photosynthetic organisms. Mol Plant 2:218–235

    CAS  PubMed  Google Scholar 

  • Garcia-Canas V, Simo C, Leon C, Ibanez E, Cifuentes A (2011) Ms-based analytical methodologies to characterize genetically modified crops. Mass Spectrom Rev 30:396–416

    CAS  PubMed  Google Scholar 

  • Gerber IB, Laukens K, Witters E, Dubery IA (2006) Lipopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells. Plant Physiol Biochem 44:369–379

    CAS  PubMed  Google Scholar 

  • Gerber IB, Laukens K, De Vijlder T, Witters E, Dubery IA (2008) Proteomic profiling of cellular targets of lipopolysaccharide-induced signalling in Nicotiana tabacum BY-2 cells. Biochim Biophys Acta 1784:1750–1762

    CAS  PubMed  Google Scholar 

  • Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717

    PubMed Central  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100. doi:10.1126/science.1068275

    CAS  PubMed  Google Scholar 

  • Gokulakannan GG, Niehaus K (2010) Characterization of the Medicago truncatula cell wall proteome in cell suspension culture upon elicitation and suppression of plant defense. J Plant Physiol 167:1533–1541

    CAS  PubMed  Google Scholar 

  • Gómez A, López JA, Pintos B, Camafeita E, Bueno MA (2009) Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns. Proteomics 9:4355–4367

    PubMed  Google Scholar 

  • Gong CY, Wang T (2013) Proteomic evaluation of genetically modified crops: current status and challenges. Front Plant Sci 4:41. doi:10.3389/fpls.2013.00041

    PubMed Central  PubMed  Google Scholar 

  • Gong CY, Li Q, Yu HT, Wang Z, Wang T (2012) Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. J Proteome Res 11:3019–3029

    CAS  PubMed  Google Scholar 

  • Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardeström P, Schröder W, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47:720–734

    CAS  PubMed  Google Scholar 

  • Grave PR, Haystead TAJ (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63

    Google Scholar 

  • Grimsrud PA, den Os D, Wenger CD, Swaney DL et al (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152:19–28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta R, Deswal R (2012) Low temperature stress modulated secretome analysis and purification of anti freeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Proteome Res 11:2684–2696

    CAS  PubMed  Google Scholar 

  • Gupta S, Wardhan V, Verma S, Gayali S, Rajamani U, Datta A et al (2011) Characterization of the secretome of chickpea suspension culture reveals pathway abundance and the expected and unexpected secreted proteins. J Proteome Res 10:5006–5015

    CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope coded affinity tags. Nat Biotechnol 17:994–999

    CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R (2002) Proteome analysis of low abundance proteins using multidimensional chromatography and isotope coded affinity tags. J Proteome Res 1:47–54

    CAS  PubMed  Google Scholar 

  • Hagglund P, Bunkenborg J, Maeda K, Svensson B (2008) Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags. J Proteome Res 7:5270–5276

    PubMed  Google Scholar 

  • Hagglund P, Bunkenborg J, Yang F, Harder LM et al (2010) Identification of thioredoxin target disulfides in proteins released from barley aleurone layers. J Proteomics 73:1133–1136

    PubMed  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES et al (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    CAS  PubMed  Google Scholar 

  • Heazlewood JL, Howell KA, Whelan J, Millar AH (2003) Towards an analysis of the rice mitochondrial proteome. Plant Physiol 132:230–242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hegde PS, Whitey IR, Debouckz C (2003) Interplay of transcriptomics and proteomics. Curr Opin Biotechnol 14:647–651

    CAS  PubMed  Google Scholar 

  • Holmes P, Farquharson R, Hall PJ, Rolfe BG (2006) Proteomic analysis of root meristems and the effects of acetohydroxyacid synthase-inhibiting herbicides in the root of Medicago truncatula. J Proteome Res 5:2309–2316

    CAS  PubMed  Google Scholar 

  • Horváth-Szanics E, Szabó Z, Janáky T, Pauk J, Hajós GJ (2006) Proteomics as an emergent tool for identification of stress-induced proteins in control and genetically modified wheat lines. Chromatographia 63(13 Supplement):S143–S147

    Google Scholar 

  • Hsu JL, Wang LY, Wang SY, Lin CH et al (2009) Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci 7:42

    PubMed Central  PubMed  Google Scholar 

  • Huang S, Taylor NL, Narsai R, Eubel H et al (2009) Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. Plant Physiol 149:719–734

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hurd TR, James AM, Lilley KS, Murphy MR (2009) Measuring redox changes to mitochondrial protein thiols with redox difference gel electrophoresis (Redox-DIGE). Methods Enzymol 456:343–361

    CAS  PubMed  Google Scholar 

  • Hynek R, Svensson B, Jensen ON, Barkholt V, Finnie C (2009) The plasma membrane proteome of germinating barley embryos. Proteomics 9:3787–3794. doi:10.1002/pmic.200800745

    CAS  PubMed  Google Scholar 

  • Imin N, Kerim T, Rolfe BG, Weinman JJ (2004) Effect of early cold stress on the maturation of rice anthers. Proteomics 4:1873–1882

    CAS  PubMed  Google Scholar 

  • Ioset JR, Urbaniak B, Ndjoko-Ioset K, Wirth J, Martin F, Gruissem W et al (2007) Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol Biol 65:645–654

    CAS  PubMed  Google Scholar 

  • Ito J, Taylor NL, Castleden I, Weckwerth W et al (2009) A survey of the Arabidopsis thaliana mitochondrial phosphoproteome. Proteomics 9:4229–4240

    CAS  PubMed  Google Scholar 

  • Jacoby RP, Millar AH, Taylor NL (2010) Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J Proteome Res 9:6595–6604

    CAS  PubMed  Google Scholar 

  • Jaiswal DK, Ray D, Subba P, Mishra P, Gayali S, Datta A, Chakraborty S, Chakraborty N (2012) Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.). Proteome Sci 10:59–71

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    CAS  PubMed  Google Scholar 

  • Jamet E, Boudart G, Borderies G, Charmont S, Lafitte C, Rossignol M et al (2008) Isolation of plant cell wall proteins. Methods Mol Biol 425:187–201

    CAS  PubMed  Google Scholar 

  • Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413

    CAS  PubMed  Google Scholar 

  • Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8:33–41

    PubMed  Google Scholar 

  • Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7:391–403

    CAS  PubMed  Google Scholar 

  • Jones AM, Bennett MH, Mansfield JW, Grant M (2006a) Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics 6:4155–4165

    CAS  PubMed  Google Scholar 

  • Jones AM, Thomas V, Bennett MH, Mansfield J, Grant M (2006b) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jonscher KR (2005) Validating sequence assignments for peptide fragmentation patterns: a primer in ms/ms sequence identification. Available at www.ProteomeSoftware.com.

    Google Scholar 

  • Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K, Gruissem W, Baginsky S, Schmidt R, Schulze WX et al (2011) MASCP gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155:259–270. doi:10.1104/pp. 110.168195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jung E, Heller M, Sanchez JC, Hochstrasser DF (2000) Proteomics meets cell biology: the establishment of subcellular proteomes. Electrophoresis 21:3369–3377

    CAS  PubMed  Google Scholar 

  • Jung YH, Jeong SH, Kim SH, Singh R, Lee JE, Cho YS et al (2008) Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps. J Proteome Res 7:5187–5210

    CAS  PubMed  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    CAS  PubMed  Google Scholar 

  • Karlova R, Boeren S, Russinova E, Aker J et al (2006) The Arabidopsis somatic embryogenesis receptor-like kinase1protein complex includes brassinosteroid-insensitive1. Plant Cell 18:626–638

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaschani F, Gu C, Niessen S, Hoover H, Cravatt BF, van der Hoorn RA (2009) Diversity of serine hydrolase activities of unchallenged and botrytis-infected Arabidopsis thaliana. Mol Cell Proteomics 8:1082–1093

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kav NV, Srivastava S, Yajima W, Sharma N (2007) Application of proteomics to investigate plant-microbe interactions. Curr Proteomics 4:28–43

    CAS  Google Scholar 

  • Kawamur Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154

    Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY et al (2004a) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578

    CAS  PubMed  Google Scholar 

  • Kim ST, Yu S, Kim SG, Kim HJ et al (2004b) Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 4:3579–3587

    CAS  Google Scholar 

  • Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS et al (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539

    CAS  PubMed  Google Scholar 

  • Kim S, Wang Y, Kang S, Kim S, Rakwal R, Kim Y et al (2009a) Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. J Proteome Res 8:3598–3605

    CAS  PubMed  Google Scholar 

  • Kim ST, Kang YH, Wang Y, Wu J, Park ZY, Rakwal R et al (2009b) Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics 9:1302–1313

    CAS  PubMed  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Human Genetic 26:231–243

    CAS  Google Scholar 

  • Kok EJ, Lehesranta SJ, van Dijk JP, Helsdingen JR, Dijksma WTP, Van Hoef AMA et al (2008) Changes in gene and protein expression during tomato ripening. Consequences for the safety. Food Sci Technol Int 14:503–518

    CAS  Google Scholar 

  • Komatsu S, Kobayashi Y, Nishizawa K, Nanjo Y, Furukawa K (2010) Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39:1435–1449

    CAS  PubMed  Google Scholar 

  • Komatsu S, Yamamoto A, Nakamura T, Nouri MZ, Nanjo Y, Nishizawa K, Furukawa K (2011) Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Proteome Res 10(9):3993–4004

    CAS  PubMed  Google Scholar 

  • Kong FJ, Oyanagi A, Komatsu S (2009) Cell wall proteome of wheat roots under flooding stress using gel-based and LCMS/MS- based proteomics approaches. Biochim Biophys Acta 1804:124–136

    PubMed  Google Scholar 

  • Konishi H, Ishiguro K, Komatsu S (2001) A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 1:1162–1171

    CAS  PubMed  Google Scholar 

  • Konozy EH, Rogniaux H, Causse M, Faurobert M (2013) Proteomic analysis of tomato (Solanum lycopersicum) secretome. J Plant Res 126:251–266

    CAS  PubMed  Google Scholar 

  • Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Møller IM (2004) Identification of oxidised proteins in the matrix of rice leaf mitochondria by immune precipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851

    CAS  PubMed  Google Scholar 

  • Kruft V, Eubel H, Jeansch L, Werhahn W, Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127(4):1694–1710

    PubMed Central  CAS  Google Scholar 

  • Kuiper HA, Kok EJ, Engel KH (2003) Exploitation of molecular profiling techniques for GM food safety assessment. Curr Opin Biotechnol 14:238–243

    CAS  PubMed  Google Scholar 

  • Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M (2002) Subcellular localization of the yeast proteome. Genes Dev 16:707–719

    PubMed Central  CAS  Google Scholar 

  • Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57:1547–1551

    CAS  PubMed  Google Scholar 

  • Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222

    PubMed Central  PubMed  Google Scholar 

  • Latijnhouwers M, de Wit PJ, Govers F (2003) Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol 11:462–469

    CAS  PubMed  Google Scholar 

  • Lee BJ, Kwon SJ, Kim SK, Kim KJ, Park CJ, Kim YJ et al (2006) Functional study of hot pepper 26S proteasome subunit RPN7 induced by tobacco mosaic virus from nuclear proteome analysis. Biochem Biophys Res Commun 351:405–411

    CAS  PubMed  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ et al (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369–3383

    CAS  PubMed  Google Scholar 

  • Lee KH, Kim Y, Park C, Kim H (2008) Proteomic identification of differentially expressed proteins in Arabidopsis mutant ntm1-D with disturbed cell division. Mol Cells 25:70–77

    CAS  PubMed  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY et al (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11

    CAS  PubMed  Google Scholar 

  • Lehesranta SJ, Davies HV, Shepherd LVT, Koistinen KM, Massat N, Nunan N et al (2006) Proteomic analysis of the potato tuber life cycle. Proteomics 6:6042–6052

    CAS  PubMed  Google Scholar 

  • Li H, Wong WS, Zhu L, Guo HW et al (2009) Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 9:1646–1661

    CAS  PubMed  Google Scholar 

  • Li K, Zhu W, Zeng K, Zhang Z, Ye J, Ou W et al (2010) Proteome characterization of cassava (Manihot esculenta Crantz) somatic embryos, plantlets and tuberous roots. Proteome Sci 8:10–21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liao M, Li Y, Wang Z (2009) Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics 9:2809–2819

    CAS  PubMed  Google Scholar 

  • Lilley KS, Dupree P (2007) Plant organelle proteomics. Curr Opin Plant Biol 10:594–599

    CAS  PubMed  Google Scholar 

  • Lim S, Chisholm K, Coffin RH, Peters RD, Al-Mughrabi KI, Wang-Pruski G et al (2012) Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation. J Proteome Res 11:2594–2601

    CAS  PubMed  Google Scholar 

  • Lindermayr C, Durner J (2009) S-Nitrosylation in plants: pattern and function. J Proteomics 73:1–9

    CAS  PubMed  Google Scholar 

  • Liska AJ, Shevchenko A (2003) Expanding the organismal scope of proteomics: cross-species protein identification by mass spectrometry and its implications. Proteomics 3(1):19–28

    CAS  PubMed  Google Scholar 

  • Liu HL, Hsu JP (2005) Recent developments in structural proteomics for protein structure determination. Proteomics 5:2056–2068

    CAS  PubMed  Google Scholar 

  • Liu H, Liu Y, Yang M, Shen S (2009) A comparative analysis of embryo and endosperm proteome from seeds of Jatropha curcas. J Integr Plant Biol 51:850–857

    CAS  PubMed  Google Scholar 

  • Lochmanová G, Zdráhal Z, Konečná H, Koukalová S, Malbeck J, Souček P et al (2008) Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis: a proteomic analysis. J Exp Bot 59:3705–3719

    PubMed  Google Scholar 

  • Lu T, Meng L, Yang C, Liu G, Liu G, Ma W et al (2008) A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. Planta 228:1029–1041

    CAS  PubMed  Google Scholar 

  • Majoul T, Bancel E, Triboi E, Ben Hamida J, Branlard G (2004) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4:505–513

    CAS  PubMed  Google Scholar 

  • Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    CAS  PubMed  Google Scholar 

  • Margaria P, Palmano S (2011) Response of the Vitis vinifera L. Cv. ‘Nebbiolo’ proteome to Flavescence dore’e phytoplasma infection. Proteomics 11:212–224

    CAS  PubMed  Google Scholar 

  • Marsh E, Alvarez S, Hicks LM, Barbazuk WB et al (2010) Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.). Proteomics 10:2057–2064

    CAS  PubMed  Google Scholar 

  • Marshall AG, Verdun FR (1990) Fourier transforms in NMR, optical, and mass spectrometry: a user’s handbook

    Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    CAS  PubMed  Google Scholar 

  • Martinez-Esteso MJ, Selles-Marchart S, Vera-Urbina JC, Pedreno MA, Bru-Martinez R (2009) Changes of defense proteins in the extra cellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors. J Proteomics 73:331–341

    CAS  PubMed  Google Scholar 

  • Millar AH, Heazlewood JL, Kristensen BK, Braun HP, Møller IM (2005) The plant mitochondrial proteome. Trends Plant Sci 10:36–43

    CAS  PubMed  Google Scholar 

  • Millar DJ, Whitelegge JP, Bindschedler LV, Rayon C, Boudet AM, Rossignol M et al (2009) The cell wall and secretory proteome of a tobacco cell line synthesizing secondary wall. Proteomics 9:2355–2372

    CAS  PubMed  Google Scholar 

  • Minic Z, Jamet E, Négroni L, Arseneder Garabedian P, Zivy M, Jouanin L (2007) A sub-proteome of Arabidopsis thaliana mature stem strapped on Concanavalin A is enriched in cell wall glycoside hydrolases. J Exp Bot 58:2503–2512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Montrichard F, Alkhalfioui F, Yano H, Vensel WH et al (2009) Thioredoxin targets in plants: the first 30 years. J Proteomics 72:452–474

    CAS  PubMed  Google Scholar 

  • Müller K, Job C, Belghazi M, Job D, Leubner-Metzger G (2010) Proteomics reveal tissue-specific features of the cress (Lepidium sativum L.) endosperm cap proteome and its hormone-induced changes during seed germination. Proteomics 10:406–416

    PubMed  Google Scholar 

  • Muthreich N, Schützenmeister A, Schütz W, Madlung J, Krug K, Nordheim A et al (2010) Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation. Eur J Cell Biol 89:242–249

    CAS  PubMed  Google Scholar 

  • Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(Suppl 1):i302–i310

    CAS  PubMed  Google Scholar 

  • Ndimba BK, Chivasa S, Hamilton JM, Simon WJ, Slabas AR (2003) Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3:1047–1059

    CAS  PubMed  Google Scholar 

  • Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5:4185–4196

    CAS  PubMed  Google Scholar 

  • Nogueira F, Goncalves E, Jereissati E, Santos M, Costa J, Oliveira-Neto O et al (2007) Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). Plant Cell Rep 26:1333–1343

    CAS  PubMed  Google Scholar 

  • Norin M, Sundström M (2002) Structural proteomics: developments in structure-to-function predictions. Trends Biotechnol 20:79–84

    CAS  PubMed  Google Scholar 

  • Nouri MZ, Komatsu S (2010) Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS based proteomics approaches. Proteomics 10:1930–1945

    CAS  PubMed  Google Scholar 

  • Nozu Y, Tsugita A, Kamijo K (2006) Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics 6:3665–3670

    CAS  PubMed  Google Scholar 

  • Nühse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    PubMed  Google Scholar 

  • Nühse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    PubMed Central  PubMed  Google Scholar 

  • Nuhse TS, Bottrill AR, Jones AME, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site specific phosphorylation. Proc Natl Acad Sci USA 96:6591–6596

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed Central  PubMed  Google Scholar 

  • O’Farrell PZ, Goodman HM, O’Farrell PH (1977) High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12(4):1133–1141

    PubMed  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1108

    CAS  PubMed  Google Scholar 

  • Palama T, Menard P, Fock I, Choi Y, Bourdon E, Govinden-Soulange J et al (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82–99

    PubMed Central  PubMed  Google Scholar 

  • Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8:4534–4546

    CAS  PubMed  Google Scholar 

  • Pan Z, Guan R, Zhu S, Deng X (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289

    PubMed  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    CAS  PubMed  Google Scholar 

  • Pandey A, Choudhary MK, Bhushan D, Chattopadhyay A, Chakraborty S, Datta A, Chakraborty N (2006) The nuclear proteome of chickpea (Cicer arietinum L.) reveals predicted and unexpected proteins. J Proteome Res 5:3301–3311

    CAS  PubMed  Google Scholar 

  • Pandey A, Chakraborty S, Datta A, Chakraborty N (2008) Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics 7:88–107

    CAS  PubMed  Google Scholar 

  • Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A et al (2010) Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 9:3443–3464

    CAS  PubMed  Google Scholar 

  • Pang C, Wang H, Pang Y, Xu C, Jiao Y, Qin Y et al (2010) Comparative proteomics indicate that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 9:2019–2033

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park OK (2004) Proteomic studies in plants. J Biochem Mol Biol 37:133–138

    CAS  PubMed  Google Scholar 

  • Patterson J, Ford K, Cassin A, Natera S, Bacic A (2007) Increased abundance of proteins involved in phyto-siderophore production in boron-tolerant barley. Plant Physiol 144:1612–1631

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14:1027–1047

    CAS  PubMed  Google Scholar 

  • Pechanova O, Pechan T, Williams P, Luthe D (2011) Proteomic analysis of the maize rachis: potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation. Proteomics 11:114–127

    CAS  PubMed  Google Scholar 

  • Pertl H, Schulze WX, Obermeyer G (2009) The pollen organelle membrane proteome reveals highly spatial–temporal dynamics during germination and tube growth of lily pollen. J Proteome Res 8:5142–5152

    CAS  PubMed  Google Scholar 

  • Purvis AC (1997) Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol Plant 100:165–170

    CAS  Google Scholar 

  • Qiao WH, Fan LM (2008) Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol 50:1238–1246

    CAS  PubMed  Google Scholar 

  • Qin GZ, Wang Q, Liu J, Li BQ, Tian SP (2009) Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteomics 9:4241–4253

    CAS  PubMed  Google Scholar 

  • Quirino BF, Candido ES, Campos PF, Franco OL, Kruger RH (2010) Proteomic approaches to study plant pathogen interactions. Phytochemistry 71:351–362

    CAS  PubMed  Google Scholar 

  • Rampitsch C, Bykova NV, Mauthe W, Yakandawala N, Jordan M (2006a) Phosphoproteomic profiling of wheat callus labelled in vivo. Plant Sci 171:488–496

    CAS  PubMed  Google Scholar 

  • Rampitsch C, Bykova NV, McCallum B, Beimcik E, Ens W (2006b) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a compatible host-pathogen interaction. Proteomics 6:1897–1907

    CAS  PubMed  Google Scholar 

  • Reeves GA, Talavera D, Thornton JM (2009) Genome and proteome annotation: organization, interpretation and integration. J R Soc Interface 6:129–147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J et al (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Remmerie N, Roef L, Van De Slijke E, Van Leene J et al (2009) A bioanalytical method for the proteome wide display and analysis of protein complexes from whole plant cell lysates. Proteomics 9:598–609

    CAS  PubMed  Google Scholar 

  • Repetto O, Rogniaux H, Firnhaber C, Zuber H, Kuster H, Larre C, Thompson R, Gallardo K (2008) Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. Plant J 56:398–410

    CAS  PubMed  Google Scholar 

  • Repetto O, Rogniaux H, Larré C, Thompson R, Gallardo K (2012) The seed nuclear proteome. Front Plant Sci 3:289. doi:10.3389/fpls.2012.00289

    PubMed Central  PubMed  Google Scholar 

  • Revel M, Groner Y (1978) Post-transcriptional and translational controls of gene expression in eukaryotes. Ann Rev Biochem 47:1079–1126

    CAS  PubMed  Google Scholar 

  • Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801

    CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Campostrini N, Matte A, Righetti PG et al (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469

    CAS  PubMed  Google Scholar 

  • Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330:1061–1064

    CAS  PubMed  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jah MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    CAS  PubMed  Google Scholar 

  • Rost H, Malmstrom L, Aebersold R (2012) A computational tool to detect and avoid redundancy in selected reaction monitoring. Mol Cell Proteomics 11:540–549

    PubMed Central  PubMed  Google Scholar 

  • Rouhier N (2010) Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytol 186:365–372

    CAS  PubMed  Google Scholar 

  • Ruebelt MC, Lipp M, Reynolds TL, Schmuke JJ, Astwood JD, Dellapenna D et al (2006) Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 3. Assessing unintended effects. J Agric Food Chem 54:2169–2177

    CAS  PubMed  Google Scholar 

  • Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142

    PubMed  Google Scholar 

  • Saleem M, Lamkemeyer T, Schützenmeister A, Fladerer C, Piepho H, Nordheim A et al (2009) Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation. J Proteome Res 8:2285–2297

    CAS  PubMed  Google Scholar 

  • Sánchez R, Pieper U, Melo F, Eswar N et al (2000) Protein structure modeling for structural genomics. Nat Struct Biol 7(Suppl):986–999

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sarma AD, Oehrle NW, Emerich DW (2008) Plant protein isolation and stabilization for enhanced resolution of two-dimensional polyacrylamide gel electrophoresis. Anal Biochem 379:192–195

    CAS  PubMed  Google Scholar 

  • Scheele GA (1975) Two-dimensional gel analysis of soluble proteins. Characterization of guinea pig exocrine pancreatic proteins. J Biol Chem 250:5375–5385

    CAS  PubMed  Google Scholar 

  • Schuch W, Bird CR, Ray J, Smith CJS (1989) Control and manipulation of gene expression during tomato fruit ripening. Plant Mol Biol 13:303–311

    CAS  PubMed  Google Scholar 

  • Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516. doi:10.1146/annurev-arplant-042809-112132

    CAS  PubMed  Google Scholar 

  • Schwacke R, Flugge UI, Kunze R (2004) Plant membrane proteome database. Plant Physiol Biochem 42:1023–1034

    CAS  PubMed  Google Scholar 

  • Scossa F, Laudencia-Chingcuanco D, Anderson OD, Vensel WH, Lafiandra D, D’Ovidio R et al (2008) Comparative proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line overexpressing a low molecular weight glutenin subunit gene in the endosperm. Proteomics 8:2948–2966

    CAS  PubMed  Google Scholar 

  • Sharma N, Hotte N, Rahman MH, Mohammadi M et al (2008) Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans: a proteomics-based approach. Proteomics 8:3516–3535

    CAS  PubMed  Google Scholar 

  • Shi F, Takasaki H, Komatsu S (2008) Quantitative analysis of auxin-regulated proteins from basal part of leaf sheaths in rice by two-dimensional difference gel electrophoresis. Phytochemistry 69:637–646

    CAS  PubMed  Google Scholar 

  • Shinano T, Komatsu S, Yoshimur T, Tokutake S, Kong FJ, Watanabe T et al (2011) Proteomic analysis of secreted proteins from aseptically grown rice. Phytochemistry 72:312–320

    CAS  PubMed  Google Scholar 

  • Simpson JC, Pepperkok R (2003) Localizing the proteome. Genome Biol 4:240

    PubMed Central  PubMed  Google Scholar 

  • Skylas DJ, Cordwell SJ, Hains PG, Larsen MR, Basseal DJ, Walsh BJ et al (2002) Heat shock of wheat during grain filling: proteins associated with heat-tolerance. J Cereal Sci 35:175–188

    CAS  Google Scholar 

  • Soares NC, Francisco R, Ricardo CP, Jackson PA (2007) Proteomics of ionically bound and soluble extra cellular proteins in Medicago truncatula leaves. Proteomics 7:2070–2082

    CAS  PubMed  Google Scholar 

  • Soares NC, Francisco R, Vielba JM, Ricardo CP, Jackson PA (2009) Associating wound-related changes in the apoplast proteome of Medicago with early steps in the ROS signal-transduction pathway. J Proteome Res 8:2298–2309

    CAS  PubMed  Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N et al (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19

    PubMed Central  PubMed  Google Scholar 

  • Song Y, Zhang C, Ge W, Zhang Y, Burlingame AL, Guo Y (2011) Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. J Proteomics 74:1045–1067

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soreghan BA, Yang F, Thomas SN, Hsu J, Yang AJ (2003) High-throughput proteomic-based identification of oxidatively induced protein carbonylation in mouse brain. Pharm Res 20:1713–1720

    CAS  PubMed  Google Scholar 

  • Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61:1969–1986

    CAS  PubMed  Google Scholar 

  • Stroher E, Dietz KJ (2006) Concepts and approaches towards understanding the cellular redox proteome. Plant Biol 8:407–418

    CAS  PubMed  Google Scholar 

  • Sugiyama N, Nakagami H, Mochida K, Daudi A et al (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:193

    PubMed Central  PubMed  Google Scholar 

  • Takáč T, Pechan T, Richter H, Müller J, Eck C, Böhm N et al (2011) Proteomics on brefeldin A-treated Arabidopsis roots reveals profilin 2 as a new protein involved in the cross-talk between vesicular trafficking and the actin cytoskeleton. J Proteome Res 10:488–501

    PubMed  Google Scholar 

  • Tan YF, O’Toole N, Taylor NL, Millar AH (2010) Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol 152:747–761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang W, Deng Z, Wang Z (2010) Proteomics shed light on the brassinosteroid signaling mechanisms. Curr Opin Plant Biol 13:27–33

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E et al (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    CAS  PubMed  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133

    CAS  PubMed  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    CAS  PubMed  Google Scholar 

  • Torta F, Usuelli V, Malgaroli A, Bachi A (2008) Proteomic analysis of protein S-nitrosylation. Proteomics 8:4484–4494

    CAS  PubMed  Google Scholar 

  • Tran HT, Plaxton WC (2008) Proteomic analysis of alterations in the secretome of Arabidopsis thaliana suspension cells subjected to nutritional phosphate deficiency. Proteomics 8:4317–4326

    CAS  PubMed  Google Scholar 

  • Van Bentem SD, Anrather D, Dohnal I, Roitinger E et al (2008) Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J Proteome Res 7:2458–2470

    Google Scholar 

  • Van Leene J, Hollunder J, Eeckhout D, Persiau G et al (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6:397

    PubMed Central  PubMed  Google Scholar 

  • Ventelon-Debout M, Delalande F, Brizard J-P, Diemar H et al (2004) Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing IT Rice yellow mottle virus IT infection. Proteomics 4:216–225

    CAS  PubMed  Google Scholar 

  • Vierstra RD (2009) The ubiquitin–26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    CAS  PubMed  Google Scholar 

  • Villeth GR, Reis FB, Tonietto A, Huergo L et al (2009) Comparative proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the susceptible and the resistant cultivars of Brassica oleracea. FEMS Microbiol Lett 298:260–266

    CAS  PubMed  Google Scholar 

  • Vítámvás P, Prášil IT (2008) WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiol Biochem 46:970–976

    PubMed  Google Scholar 

  • Vítámvás P, Saalbach G, Prášil IT, Čapková V, Opatrná J, Jahoor A (2007) WCS120 protein family and proteins soluble uponboiling in cold-acclimated winter wheat. J Plant Physiol 164:1197–1207

    PubMed  Google Scholar 

  • Wang Y, Yang L, Xu H, Li Q et al (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5:4496–4503

    CAS  PubMed  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    CAS  PubMed  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16(7):1090–1094

    CAS  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    CAS  PubMed  Google Scholar 

  • Watson BS, Lei Z, Dixon RA, Sumner LW (2004) Proteomics of Medicago sativa cell walls. Phytochemistry 65:1709–1720

    CAS  PubMed  Google Scholar 

  • Wild DL, Saqi MAS (2004) Structural proteomics: inferring function from protein structure. Curr Proteomic 1:59–65

    CAS  Google Scholar 

  • Wright JC, Sugden D, Francis-McIntyre S, Riba-Garcia I, Gaskel SJ, Grigoriev IV, Baker SE, Beynon RJ, Hubbard SJ (2009) Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics 10:61. doi:10.1186/1471-2164-10-61

    PubMed Central  Google Scholar 

  • Wright PC, Noirel J, Ow SY, Fazeli A (2012) A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogenology 77:738–765.e52

    Google Scholar 

  • Wu CC, Yates JR (2003) The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21:262–267

    CAS  PubMed  Google Scholar 

  • Xu Y, Gianfagna T, Huang B (2010) Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. J Exp Bot 6:3273–3289

    Google Scholar 

  • Yakunin AF, Yee AA, Savchenko A, Edwards AM, Arrowsmith CH (2004) Structural proteomics: a tool for genome annotation. Curr Opin Chem Biol 8:42–48

    CAS  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    CAS  PubMed  Google Scholar 

  • Yanagida M (2002) Functional proteomics; current achievements. J Chromatogr B 771:89–106

    CAS  Google Scholar 

  • Yang Y, Bian S, Yao Y, Liu J (2008) Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. J Proteome Res 7:4623–4637

    CAS  PubMed  Google Scholar 

  • Yano H, Kuroda M (2006) Disulfide proteome yields a detailed understanding of redox regulations: a model study of thioredoxin-linked reactions in seed germination. Proteomics 6:294–300

    CAS  Google Scholar 

  • Yano H, Kuroda S (2008) Introduction of the disulfide proteome: application of a technique for the analysis of plant storage proteins as well as allergens. J Proteome Res 7:3071–3079

    CAS  PubMed  Google Scholar 

  • Yin L, Lan Y, Zhu L (2008) Analysis of the protein expression profiling during rice callus differentiation under different plant hormone conditions. Plant Mol Biol 68:597–617

    CAS  PubMed  Google Scholar 

  • Yook SH, Oltvai ZN, Barabási AL (2004) Functional and topological characterization of protein interaction networks. Proteomics 4:928–942

    CAS  PubMed  Google Scholar 

  • Young NL, Plazas-Mayorca MD, Garcia BA (2010) Systems-wide proteomic characterization of combinatorial post-translational modification patterns. Expert Rev Proteomics 7:79–92

    CAS  PubMed  Google Scholar 

  • Ytterberg AJ, Jensen ON (2010) Modification-specific proteomics in plant biology. J Proteomics 73:2249–2266

    CAS  PubMed  Google Scholar 

  • Zhang MH, Li GW, Huang W, Bi T, Chen GY, Tang ZC et al (2010) Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics 10:3117–3129

    CAS  PubMed  Google Scholar 

  • Zhang Y, Giboulot A, Zivy M, Valot B, Jamet E, Albenne C (2011) Combining various strategies to increase the coverage of the plant cell wall glycoproteome. Phytochemistry 72:1109–1123

    CAS  PubMed  Google Scholar 

  • Zhao Y, Jensen ON (2009) Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9:4632–4641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao P, Wang L, Han L, Wang J, Yao Y, Wang H et al (2010) Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J Proteome Res 9:1076–1087

    CAS  PubMed  Google Scholar 

  • Zhou W, Eudes F, Laroche A (2006) Identification of differentially regulated proteins in response to a compatible interactions between the pathogen Fusarium graminearum and its host Triticum aestivum. Proteomic 6:4599–4609

    CAS  Google Scholar 

  • Zhou L, Bokhari SA, Dong CJ, Liu JY (2011) Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. PLoSONE 6:e16723. doi:10.1371/journal.pone.0016723

    CAS  Google Scholar 

  • Zhou Z, Licklider LJ, Gygi SP, Reed R (2002) Comprehensive proteomic analysis of the human spliceosome. Nature 419(6903):182–185

    CAS  PubMed  Google Scholar 

  • Zhu J, Chen S, Alvarez S, Asirvatham VS, Schachtman DP, Wu Y et al (2006) Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol 140:311–325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu J, Alvarez S, Marsh EL, Lenoble ME, Cho IJ, Sivaguru M et al (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145:1533–1548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zulak KG, Khan MF, Alcantara J, Schriemer DC et al (2009) Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics. Mol Cell Proteomics 8:86–98

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Agrawal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Gupta, D.B., Shekhar, S., Agrawal, L. (2015). Plant Proteomics: Technologies and Applications. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_8

Download citation

Publish with us

Policies and ethics