Skip to main content

Cytogenomics and Mutagenomics in Plant Functional Biology and Breeding

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

One of the most important breakthroughs in the history of genetics and plant breeding was the development of plant cytology and experimental mutagenesis, which later brought about plant cytogenetics and mutation breeding and now they have entered in functional biology era with the unprecedented development of plant molecular cytogenetics, genetics, and functional genomics. Application of cell biology particularly chromosome biology in the fields of plant genome structure and function has ushered the development of plant cytogenomics. Development of advanced technology like DNA base-specific fluorescence banding, GISH, and FISH-based chromosome painting has greatly facilitated the identification, localization, and mapping of chromosome-specific markers in plants, which is of high importance in plant molecular systematics, species identification, detection of hybrid nature, alien chromosomes and chromosomal aberrations, analysis of somaclonal variations, and diversity analysis. The dynamism of chromatin architecture and cell cycle, representing chromosome functional biology, is another important part of plant cytogenomics. On the other hand, mutagenomics is defined as applied mutation breeding, in which genomic information and tools are utilized in the designing of breeding strategies, screening, selection and verification/authentication of natural and induced mutants, and the utilization of desirable mutations in the breeding processes. Considerable progress has been made in recent times in breeding of cereals, legumes, oil seeds, vegetables, horticultural crops, spices and condiments, fiber-yielding plants, and medicinal and aromatic plants for diverse types of desirable agronomic and functional traits including disease and abiotic stress resistance/tolerance; herbicide resistance; lowering of anti-nutritional factors; enhancement of proteins, minerals, vitamins, essential amino acids, flavonoids, antioxidants, and dietary fibers; enrichment of soil nutrition; enhancement of ornamental, medicinal, and aromatic values; and development of functional and therapeutic foods and other diverse traits related to nutritional quality and high yield. This can be found in a mutant population which carries variant forms of potentially each and every gene present in a particular genome. The functionality of mutagenomics is greatly enhanced due to integration of classical mutagenesis with modern “omics” technology through the development of desirable diploid mutants, recombinant inbred lines, and aneuploid and polyploid lines as effective cytogenetic tools, utilizable in genome mapping and analysis. Functional sets of aneuploid tools are now available in different edible plants, through which several morphological, biochemical, and molecular traits/markers have been assigned on definite chromosomes to construct linkage maps. Recently, induced mutations showing alterations in antioxidant defense response have been identified and tested against diverse types of abiotic stresses to reveal intrinsic cellular and metabolic events toward sensitivity of seed plants to salinity, drought, metal toxicity, and other stresses. These mutations are giving vital inputs, which can be used in formulating effective breeding strategies in different agroclimatic conditions. Mutagenized population has revealed altered pattern of genome response and can also be exploited in enhancing production of natural plant products like antioxidants and flavonoids. Furthermore, these large mutant populations have the potential in reverse genetics approach by employing various techniques, particularly “Targeting Induced Local Lesions in Genomics (TILLING)” technology to better understand gene functions through high-throughput mutation screening, and have been successfully used in major crop plants along with model plant Arabidopsis. The development of mutagenomic approach, thus, provides a cost-effective, clean, and easy-to-use functional tool to increase the genetic diversity and in utilization of this diversity in plant molecular mutation breeding through modern genomic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation derived varieties. Euphytica 135:187–204

    Google Scholar 

  • Akter S, Alam SS (2005) Differential fluorescent banding pattern in three varieties of Cicer arietinum L. (Fabaceae). Cytologia 70:441–445

    Google Scholar 

  • Ali HBM, Meister A, Schubert I (2000) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032

    CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Auger DL, Birchler JA (2002) Maize tertiary trisomic stocks derived from B-A translocations. J Hered 93(1):42–47

    CAS  PubMed  Google Scholar 

  • Balyan HS, Houben A, Ahne R (2002) Karyotype analysis and physical mapping of 18S-5.8S-25S and 5S ribosomal RNA loci in species of genus Lens Miller (Fabaceae). Caryologia 55:121–128

    Google Scholar 

  • Barshile JD, Auti SG, Apparao BJ (2009) Genetic enhancement of chickpea through induced mutagenesis. J Food Legumes 22(1):26–29

    Google Scholar 

  • Begum R, Alam SS, Menzel G, Schmidt T (2009) Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh. Ann Bot 104(5):863–872

    PubMed Central  CAS  PubMed  Google Scholar 

  • Begum R, Zakrzewski F, Menzel G, Weber R, Alam SS, Schmidt T (2013) Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae). Ann Bot. doi:10.1093/aob/mct103

    Google Scholar 

  • Belyakova AS, Sinjushin AA (2012) Phenotypic expression and inheritance of determinate habit (deh) mutation in pea (Pisum sativum L.). In: Program and abstract book of VI international conference on legumes genetics and genomics, Hyderabad, India

    Google Scholar 

  • Blair MW, Porch T, Cichy K, Galeano CH, Lariguet P, Pankhurst C, Broughton W (2007) Induced mutants in common bean (Phaseolus vulgaris), and their potential use in nutritional quality breeding and gene discovery. Israel J Plant Sci 55(2):191–200

    CAS  Google Scholar 

  • Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso I, Fileppi M et al (2009) Isolation and characterization of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221

    CAS  PubMed  Google Scholar 

  • Ceccarelli M, Sarri V, Polizzi E, Andreozzi G, Cionini PG (2010) Characterization, evolution and chromosomal distribution of two satellite DNA sequence families in Lathyrus species. Cytogenet Genome Res 128:236–244

    CAS  PubMed  Google Scholar 

  • Chahota RK, Mukai Y, Chaudhary HK, Kishore N, Sharma TR (2011) Karyotyping and in situ chromosomal localization of rDNA sites in black cumin Bunium persicum (Boiss) B. Fedtsch, 1915 (Apiaceae). Comp Cytogenet 5(4):345–353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chakraborty NR, Paul A (2012) Role of induced mutations for enhancing nutrition quality and production of food. Int J Bioresour Stress Manag 4(1):14–19

    Google Scholar 

  • Chaudhary HK, Sood VK, Tayeng T, Kalia V, Sood A (2011) Molecular cytogenetics in physical mapping of genomes and alien introgressions. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CAB International, Wallingford

    Google Scholar 

  • Chen JF, Luo XD, Qian CT, Jahn MM, Staub JE, Zhuang FY, Lou QF, Ren G (2004) Cucumis monosomic alien addition lines: morphological, cytological, and genotypic analyses. Theor Appl Genet 108(7):1343–1348

    PubMed  Google Scholar 

  • Chen Q-F, Hsam Sai LK, Zeller FJ (2007) Cytogenetic studies on diploid and autotetraploid common buckwheat and their autotriploid and trisomics. Crop Sci 47(6):2340–2345

    Google Scholar 

  • Choi H-W, Koo D-H, Bang K-H, Paek K-Y, Seong N-S, Bang J-W (2009) FISH and GISH analysis of the genomic relationships among Panax species. Genes Genomics 31(1):99–105

    CAS  Google Scholar 

  • Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9

    PubMed Central  PubMed  Google Scholar 

  • Cregan PB, Kollipara KP, Xu SJ, Singh RJ, Fogarty SE, Hymowitz T (2001) Primary trisomics and SSR markers as tools to associate chromosomes with linkage groups in soybean. Crop Sci 41(4):1262–1267

    CAS  Google Scholar 

  • Cross MJ, Waters DLE, Lee LS, Henry RJ (2008) Endonucleolytic mutation analysis by internal labelling (EMAIL). Electrophoresis 29:1291–1301

    CAS  PubMed  Google Scholar 

  • Curtin SJ, Zhang F, Sander JF, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156(2):466–473

    PubMed Central  CAS  PubMed  Google Scholar 

  • D’Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    PubMed  Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, de Oliveira Y, Guichard C, Thompson R, Bendahmane A (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43

    PubMed Central  PubMed  Google Scholar 

  • David P, Chen NWG, Pedrosa-Harand A, Thareau V, Sévignac M, Cannon SB, Debouck D, Langin T, Geffroy V (2009) A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol 151(3):1048–1065

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dhar MK, Friebe B, Kaul S, Gill BS (2006) Characterization and physical mapping of ribosomal RNA gene families in Plantago. Ann Bot 97(4):541–548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Diao WP, Bao SY, Jiang B, Cui L, Chen JF (2009) Primary trisomics obtained from autotriploid by diploid reciprocal crosses in cucumber. Sex Plant Reprod 22(1):45–51

    PubMed  Google Scholar 

  • Dierking EC, Bilyeu KD (2009) New sources of soybean seed meal and oil composition traits identified through TILLING. BMC Plant Biol 9:89

    PubMed Central  PubMed  Google Scholar 

  • Dixit GP, Tripathi DP, Chandra S, Tewari TN, Tickoo JL (2000) MULLaRP crops: varieties developed during the last fifty years. All India Coordinated Research Project on MULLaRP (ICAR), Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Doležel J, Vrána J, Šafář J, Kubaláková M, Šimková H (2012) Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 12(3):397–416

    PubMed Central  PubMed  Google Scholar 

  • Dwivedi S, Perotti E, Ortiz R (2008) Towards molecular breeding of reproductive traits in cereal crops. Plant Biotechnol J 6:529–559

    CAS  PubMed  Google Scholar 

  • Feng J, Liu Z, Cai X, Jan C-C (2013) Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones. G3 Genes|Genomes|Genetics 3(1):31–40

    PubMed Central  CAS  PubMed  Google Scholar 

  • Findley SD, Psappas AL, Cui Y, Birchler JA, Palmer RG, Stacey G (2011) Fluorescence in situ hybridization–based karyotyping of soybean translocation lines. G3 Genes|Genomes|Genetics 1(2):117–129

    PubMed Central  Google Scholar 

  • Foo E, Morris SE, Parmenter K, Young N, Wang H, Jones A, Rameau C, Turmbull CGN, Beveridge CA (2007) Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol 143(3):1418–1428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fradkin M, Ferrari MR, Espert SM, Ferreira V, Grassi E, Greizerstein E, Poggio L et al (2013) Differentiation of triticale cultivars through FISH karyotyping of their rye chromosomes. Genome. doi:10.1139/gen-2012-0117

    PubMed  Google Scholar 

  • Frasch R, Weigand C, Perez PT, Palmer RG, Sandhu D (2011) Molecular mapping of two environmentally sensitive male-sterile mutants in soybean. J Hered 102:11–16

    CAS  PubMed  Google Scholar 

  • Frerichmann SLM, Kirchhoff M, Müller AE, Scheidig AJ, Jung C, Kopisch-Obuch FJ (2013) EcoTILLING in Beta vulgaris reveals polymorphisms in the FLC-like gene BvFL1 that are associated with annuality and winter hardiness. BMC Plant Biol 13:52

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaikwad NB, Kothekar VS (2011) Studies on trypsin inhibitor, polyphenol and lectin content in induced mutants of lentil. Indian J Genet 71(2):158–163

    CAS  Google Scholar 

  • Goyal S, Kozgar MI, Fatma S, Khan S (2011) Genetic improvement of blackgram, chickpea and faba bean through conventional and advanced approaches. In: Khan S, Kozgar MI (eds) Breeding of pulse crops. Kalyani Publishers, Ludhiana

    Google Scholar 

  • Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta PK (2006) Plant cytogenetics: a re-birth in twenty-first century. Indian J Crop Sci 1(1–2):1–7

    CAS  Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics 2008:Article ID 896451, 36 pages. doi:10.1155/2008/896451

  • Han Y, Zhang Z, Huang S, Jin W (2011) An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2. BMC Genet 12:18

    PubMed Central  PubMed  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    PubMed Central  CAS  Google Scholar 

  • Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L (2010) Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186(4):1231–1245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS (Pat), Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J. doi:10.1111/j.1365-313X.2011.04544.x

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006) Isolation of a NaCl-tolerant mutant of Chrysanthemum morifolium by gamma radiation: in vitro mutagenesis and selection by salt stress. Funct Plant Biol 33(1):91–101

    CAS  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    CAS  PubMed  Google Scholar 

  • Huang D, Wu W, Zhou Y, Hu Z, Lu L (2004) Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. Theor Appl Genet 108:1366–1370

    CAS  Google Scholar 

  • Huettel B, Kreil DP, Matzke M, Matzke AJ (2008) Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet 4(10):e1000226

    PubMed Central  PubMed  Google Scholar 

  • Hussain H (2009) Mutagenesis of genes for starch debranching enzyme isoforms in pea by zinc-finger endonucleases. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • ICARDA-HarvestPlus (2010) International Center for Agricultural Research in the dry areas mid-term report: development of high iron and zinc content lentil for nutritional security. HarvestPlus Generation Challenge Program, ICARDA, Aleppo

    Google Scholar 

  • Jadwiszczak KA, Jabłońska E, Kłosowski S, Banaszek A (2011) Aneuploids in the shrub birch Betula humilis populations in Poland. Acta Soc Bot Pol 80(3):233–235

    Google Scholar 

  • Jain SM, Suprasanna P (2011) Induced mutations for enhancing nutrition and food production. Geneconserve 40:201–215

    Google Scholar 

  • Jauhar Prem P, Hanna WW (1998) Cytogenetics and genetics of pearl millet. Adv Agron 64:1–26

    Google Scholar 

  • Jenkins G, Hasterok R (2007) BAC ‘landing’ on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat Protoc 2(1):88–98

    CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    CAS  PubMed  Google Scholar 

  • Jiang SY, Ramachandran S (2010) Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. Int J Biol Sci 6(3):228–251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    CAS  PubMed  Google Scholar 

  • Jung C (2004) Genome analysis: mapping in sugar beet. In: Lörz H, Wenzel G (eds) Biotechnology in agriculture and biotechnology, Molecular marker systems, vol 55. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khan R, Khan H, Harada F, Harada K (2010) Evaluation of microsatellite markers to discriminate induced mutation lines, hybrid lines and cultigens in chickpea (Cicer arietinum L). Aust J Crop Sci 4(5):301–308

    CAS  Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Khush GS, Singh RJ, Sur SC, Librojo AL (1984) Primary trisomics of rice: origin, morphology, cytology and use in linkage mapping. Genetics 107:141–165

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JS, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, Mullet JE (2005) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976

    PubMed Central  CAS  PubMed  Google Scholar 

  • Knoll JE, Ramos ML, Zeng Y, Holbrook CC, Chow M, Chen S, Maleki S, Bhattacharya A, Ozias-Akins P (2011) TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC Plant Biol 11:81

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kohel RJ, Stelly DM, Yu J (2002) Tests of six cotton (Gossypium hirsutum L.) mutants for association with aneuploids. J Hered 93(2):130–132

    CAS  PubMed  Google Scholar 

  • Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921

    CAS  PubMed  Google Scholar 

  • Koornneef M, Fransz P, de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosome Res 11:183–194

    CAS  PubMed  Google Scholar 

  • Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, Watanabe N, Kianian SF, Doležel J (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170:823–829

    PubMed Central  PubMed  Google Scholar 

  • Kumar S, Bejiga G, Ahmed S, Nakkoul H, Sarker A (2010) Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem Toxicol 49:589–600

    PubMed  Google Scholar 

  • Kumar S, Mishra RK, Kumar A, Chaudhary S, Sharma V, Kumari R (2012) Genetic interaction and mapping studies on the leaflet development (lld) mutant in Pisum sativum. J Genet 91(3):325–342

    PubMed  Google Scholar 

  • Kumar APK, Boualem A, Bhattacharya A, Parikh S, Desai N, Zambelli A, Leon A, Chatterjee M, Bendahmane A (2013) SMART – Sunflower Mutant population And Reverse genetic Tool for crop improvement. BMC Plant Biol 13:38

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kynast RG, Riera-Lizarazu O (2011) Development and use of oat-maize chromosome additions and radiation hybrids. Methods Mol Biol 701:259–284

    CAS  PubMed  Google Scholar 

  • Lan T, Zhang S, Liu B, Li X, Chen R, Song W (2006) Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA. Cytogenet Genome Res 114:175–177

    CAS  PubMed  Google Scholar 

  • Lavania UC, Yamamoto M, Mukai Y (2003) Extended chromatin and DNA fibers from active plant nuclei for high-resolution FISH. J Histochem Cytochem 51(10):1249–1253

    CAS  PubMed  Google Scholar 

  • Lavania UC, Basu S, Srivastava S, Mukai Y, Lavania S (2005) In situ chromosomal localization of r-DNA sites in ‘Safed Musli’ Chlorophytum Ker. Gawl. and their physical measurement by fiber FISH. J Hered 96:155–160

    CAS  PubMed  Google Scholar 

  • Lavania UC, Kushwaha JS, Lavania S, Basu S (2010) Chromosomal localization of rDNA and DAPI bands in solanaceous medicinal plant Hyoscyamus niger L. J Genet 89:493–496

    PubMed  Google Scholar 

  • Lavia GI, Ortiz AM, Robledo G, Fernández A, Seijo G (2011) Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behavior. Ann Bot 108(1):103–111

    PubMed Central  PubMed  Google Scholar 

  • Lesniewska K, Zkiewicz MK, Nelson MN, Mahé F, AÏnouche A, Wolko B, Naganowska B (2011) Assignment of 3 genetic linkage groups to 3 chromosomes of narrow-leafed lupin. J Hered 102(2):228–236

    CAS  PubMed  Google Scholar 

  • Lijia L, Ma L, Kevin A, Song Y (2006) Flow-sorted chromosomes: a fine material for plant gene physical mapping. Caryologia 59(2):99–103

    Google Scholar 

  • Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu C, Liu J, Li H, Zhang Z, Han Y, Huang S, Jin W (2010) Karyotyping in melon (Cucumis melo L.) by cross-species fosmid fluorescence in situ hybridization. Cytogenet Genome Res 129(1–3):241–249

    CAS  PubMed  Google Scholar 

  • Lysak MA, Pecinka A, Schubert I (2003) Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Res 11:195–204

    CAS  PubMed  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 103:5224–5229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Makarevitch I, Harris C (2010) Aneuploidy causes tissue-specific qualitative changes in global gene expression patterns in maize. Plant Physiol 152(2):927–938, doi:10.1186/1471-2164-9-7

    PubMed Central  CAS  PubMed  Google Scholar 

  • Makarevitch I, Phillips RL, Springer NM (2008) Profiling expression changes caused by a segmental aneuploid in maize. BMC Genomics 9:7

    PubMed Central  PubMed  Google Scholar 

  • Marín S, Martín A, Barro F (2008) Comparative FISH mapping of two highly repetitive DNA sequences in Hordeum chilense (Roem. et Schult.). Genome 51:580–588

    PubMed  Google Scholar 

  • Marques A, Klemme S, Guerra M, Houben A (2012) Cytomolecular characterization of de novo formed rye B chromosome variants. Mol Cytogenet 5:34

    PubMed Central  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3:200–231

    Google Scholar 

  • Megyeri M, Molnár-Láng M, Molnár I (2013) Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids. Cytogenet Genome Res 139:128–136

    CAS  PubMed  Google Scholar 

  • Mishra RK, Chaudhary S, Kumar A, Kumar S (2009) Effects of MULTIFOLIATE-PINNA, AFILA, TENDRIL-LESS and UNIFOLIATA genes on leaf blade architecture in Pisum sativum. Planta 230:177–190

    CAS  PubMed  Google Scholar 

  • Moscone EA, Samuel R, Schwarzacher T, Schweizer D, Pedrosa- Harand A (2007) Complex rearrangements are involved in Cephalanthera (Orchidaceae) chromosome evolution. Chromosome Res 15:931–943

    CAS  PubMed  Google Scholar 

  • Mou B (2011) Mutations in lettuce improvement. Int J Plant Genomics 2011:Article ID 723518, 7 pages. doi:10.1155/2011/723518

  • Mudge J, Cannon S, Kalo P, Oldroyd G, Roe B, Town C, Young N (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. BMC Plant Biol 5(1):15

    PubMed Central  PubMed  Google Scholar 

  • Nag A, Rajkumar S (2011) Chromosome identification and karyotype analysis of Podophyllum hexandrumRoxb. ex Kunth using FISH. Physiol Mol Biol Plants 17(3):313–316

    PubMed Central  PubMed  Google Scholar 

  • Nagarajan S, Rens W, Stalker J, Cox T, Smith MF (2008) Chromhome: a rich Internet application for accessing comparative chromosome homology maps. BMC Bioinform 9:168

    Google Scholar 

  • Ohmido N, Ishimaru A, Kato S, Sato S, Tabata S et al (2010) Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosome Res 18:287–299

    CAS  PubMed  Google Scholar 

  • Okabe Y, Ariizumi T, Ezura H (2013) Updating the Micro-Tom TILLING platform. Breed Sci 63(1):42–48

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okagaki RJ, Kynast RG, Livingston SM, Russell CD, Rines HW, Phillips RL (2001) Mapping maize sequences to chromosomes using oat-maize chromosome addition materials. Plant Physiol 125(3):1228–1235

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oleo M, Lange W, D’Haeseleer M, De Bock TS, Jacobs M (1993) Isozyme analysis of primary trisomies in beet (Beta vulgaris L.). Genetical characterization and techniques for chromosomal assignment of two enzyme-coding loci: leucine aminopeptidase and glutamate oxaloacetate transaminase. Theor Appl Genet 86(6):761–768

    CAS  PubMed  Google Scholar 

  • Paesold S, Borchardt D, Schmidt T, Dechyeva D (2012) A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J 72(4):600–611

    CAS  PubMed  Google Scholar 

  • Palmer RG, Xu M (2008) Positioning 3 qualitative trait loci on soybean molecular linkage group E. J Hered 99(6):674–678

    CAS  PubMed  Google Scholar 

  • Parry MA, Madgwick J, Bayon PJ, Tearall C, Hernandez-Lopez K, Baudo A, Rakszegi M et al (2009) Mutation discovery for crop improvement. J Exp Bot 60(10):2817–2825

    CAS  PubMed  Google Scholar 

  • Pathan MS, Sleper DA (2008) Advances in soybean breeding. In: Stacey G (ed) Genetics and genomics of soybean. Springer, New York

    Google Scholar 

  • Pereira G, Leitão J (2010) Two powdery mildew resistance mutations induced by NEU in Pisum sativum L. affect the locus er1. Euphytica 171:345–354

    CAS  Google Scholar 

  • Perry J, Brachmann A, Welham T, Binder A, Charpentier M, Groth M, Haage K et al (2009) TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. Plant Physiol 151:1281–1291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phan HTT, Ellwood SR, Ford R, Thomas S, Oliver R (2006) Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. Funct Plant Biol 3(8):775–782

    Google Scholar 

  • Piotrowicz-Cieślak AI, Rybínski W, Michalczyk DJ (2008) Mutations modulate soluble carbohydrates composition in seeds of Lathyrus sativus L. Acta Societatis Botanicorm Poloniae 77(4):281–287

    Google Scholar 

  • Polok K, Zielinski R (2011) Mutagenic treatment induces high transposon variation in barley (Hordeum vulgare L.). Acta Agric Slovenica 97(3):179–188

    CAS  Google Scholar 

  • Porch TG, Blair MW, Lariguet P, Galeano C, Pankhurst CE, Broughton WJ (2009) Generation of a mutant population for TILLING common bean genotype BAT 93. J Am Hortic Soc 134:348–355

    Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill BS (2009) A molecular-cytogenetic method for locating genes to pericentromeric regions facilitates a genome wide comparison of synteny between the centromeric regions of wheat and rice. Genetics 183(4):1235–1247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rao SLN (2010) A look at the brighter facets of [beta]-N-oxalyl-l- [alpha], [beta]-diaminopropionic acid, homoarginine and the grasspea. Food Chem Toxicol 49:620–622

    PubMed  Google Scholar 

  • Reid JB, Ross JJ (2011) Mendel’s genes: toward a full molecular characterization. Genetics 189:3–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riera-Lizarazu O, Vales MI, Kianian SF (2008) Radiation hybrid (RH) and HAPPY mapping in plants. Cytogenet Genome Res 120(3–4):233–240

    CAS  PubMed  Google Scholar 

  • Román B, Satovic Z, Pozarkova D, Macas J, Dolezel J, Cubero JI, Torres AM (2004) Development of a composite map in Vicia faba, breeding applications and future prospects. Theor Appl Genet 108(6):1079–1088

    PubMed  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty JC, Hayes R, Stelly DM (2012) Interspecific chromosomal effects on agronomic traits in Gossypium hirsutum by AD analysis using intermated G. barbadense chromosome substitution lines. Theor Appl Genet. doi:10.1007/s00122-012-1965-9

    PubMed  Google Scholar 

  • Saito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N et al (2011) TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol 52(2):283–296

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanz MJ, Jellen EN, Loarce Y, Irigoyen ML, Ferrer E, Fominaya A (2010) A new chromosome nomenclature system for oat (Avena sativa L. and A. byzantina C. Koch) based on FISH analysis of monosomic lines. Theor Appl Genet 121(8):1541–1552

    CAS  PubMed  Google Scholar 

  • Satovic Z, Torres AM, Cubero JI (1996) Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics. Theor Appl Genet 93(7):1130–1138

    CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91(9):1294–1303

    CAS  PubMed  Google Scholar 

  • Sharma V, Chaudhary S, Kumar A, Kumar S (2012) COCHLEATA controls leaf size and secondary inflorescence architecture via negative regulation of UNIFOLIATA (LEAFY ortholog) gene in garden pea Pisum sativum. J Biosci 37:1041–1059

    CAS  PubMed  Google Scholar 

  • Shu QY, Lagoda PJL (2007) Mutation techniques for gene discovery and crop improvement. Mol Plant Breed 5:193–195

    Google Scholar 

  • Šimková H, Šafář J, Suchánková P, Kovářová P, Bartoš J, Kubaláková M, Janda J, Číhalíková J, Mago R, Lelley T, Doležel J (2008) A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS). BMC Genomics 9:237

    PubMed Central  PubMed  Google Scholar 

  • Singh RJ (2003) Plant cytogenetics. CRC Press, Inc., Boca Raton

    Google Scholar 

  • Sinjushin AA (2011) On the role of genes DETERMINATE, LATE FLOWERING and FASCIATA in the morphogenesis of pea inflorescence. Ratar Povrt/Field Veg Crop Res 48:313–320

    Google Scholar 

  • Sinjushin AA, Gostimskii SA (2006) Fasciation in pea: basic principles of morphogenesis. Rus J Dev Biol 37:375–381

    Google Scholar 

  • Sinjushin AA, Gostimskii SA (2007) Relationship between different fasciated lines of pea. Pisum Genet 39:16–18

    Google Scholar 

  • Sinyushin AA (2010) Flower fasciation: I. Origin of enlarged meristem. Moscow Univ Biol Sci Bull 65:98–103

    Google Scholar 

  • Smulikowska S, Rybinski W, Czerwiński J, Taciak M, Mieczkowska A (2008) Evaluation of selected mutants of grasspea (Lathyrus sativus L.) var. Krab as an ingredient in broiler chicken diet. J Anim Feed Sci 17:75–87

    Google Scholar 

  • Sorajjapinum W, Srinives P (2011) Chasmogamous mutant, a novel character enabling commercial hybrid seed production in mungbean. Euphytica 181:217–222

    Google Scholar 

  • Sousa A, Fuchs J, Renner SS (2013) Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet Genome Res 139:107–118

    CAS  PubMed  Google Scholar 

  • Srinivasan S, Gaur PM (2011) Genetics and characterization of an open flower mutant in chickpea. J Hered 103(2):297–302

    PubMed  Google Scholar 

  • Stack SM, Royer SM, Shearer LA, Chang SB, Giovannoni JJ, Westfall DH, White RA, Anderson LK (2009) Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res 124(3–4):339–350

    CAS  PubMed  Google Scholar 

  • Subrahmanyam NC, Azad AA (1978) Trisomic analysis of ribosomal RNA cistron multiplicity in barley (Hordeum vulgare L.). Chromosoma 69(2):255–264

    CAS  Google Scholar 

  • Sybenga J (1996) Aneuploid and other cytological tester sets in rye. Euphytica 89(1):143–151

    Google Scholar 

  • Talia P, Eduardo J, Greizerstein EJ, Hopp HE, Paniego N et al (2011) Detection of single copy sequences using BAC-FISH and C-PRINS techniques in sunflower chromosomes. Biocell 35:19–28

    CAS  PubMed  Google Scholar 

  • Talukdar D (2008) Cytogenetic characterization of seven different primary tetrasomics in grass pea (Lathyrus sativus L.). Caryologia 61:402–410

    Google Scholar 

  • Talukdar D (2009a) Dwarf mutations in grass pea (Lathyrus sativus L.): origin, morphology, inheritance and linkage studies. J Genet 88(2):165–175

    PubMed  Google Scholar 

  • Talukdar D (2009b) Recent progress on genetic analysis of novel mutants and aneuploid research in grass pea (Lathyrus sativus L.). Afr J Agric Res 4:1549–1559

    Google Scholar 

  • Talukdar D (2009c) Development of cytogenetic stocks through induced mutagenesis in grass pea (Lathyrus sativus): current status and future prospects in crop improvement. Grain Legume 54:30–31

    Google Scholar 

  • Talukdar D (2010a) Reciprocal translocations in grass pea (Lathyrus sativus L.). Pattern of transmission, detection of multiple interchanges and their independence. J Hered 101:169–176

    CAS  PubMed  Google Scholar 

  • Talukdar D (2010b) Cytogenetic characterization of induced autotetraploids in grass pea (Lathyrus sativus L.). Caryologia 63:62–72

    Google Scholar 

  • Talukdar D (2010c) Allozyme variations in leaf esterase and root peroxidase isozymes and linkage with dwarfing genes in induced dwarf mutants of grass pea (Lathyrus sativus L.). Int J Genet Mol Biol 2(6):112–120

    CAS  Google Scholar 

  • Talukdar D (2010d) Fluorescent-banded karyotype analysis and identification of chromosomes in three improved Indian varieties of grass pea (Lathyrus sativus L.). Chromosome Sci 13:3–10

    Google Scholar 

  • Talukdar D (2011a) Genetics of pod indehiscence in Lathyrus sativus L. J Crop Improv 25:1–15

    Google Scholar 

  • Talukdar D (2011b) Cytogenetic analysis of a novel yellow flower mutant carrying a reciprocal translocation in grass pea (Lathyrus sativus L.). J Biol Res-Thessaloniki 15:123–134

    Google Scholar 

  • Talukdar D (2011c) Bold-seeded and seed coat colour mutations in grass pea (Lathyrus sativus L.): origin, morphology, genetic control and linkage analysis. Int J Curr Res 3:104–112

    Google Scholar 

  • Talukdar D (2011d) Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: induced mutagenesis and selection by salt stress. J Med Plants Res 5(16):3619–3628

    CAS  Google Scholar 

  • Talukdar D (2011e) Morpho-physiological responses of grass pea (Lathyrus sativus L.) genotypes to salt stress at germination and seedling stages. Legum Res 34(4):232–241

    Google Scholar 

  • Talukdar D (2011f) The aneuploid switch: extra-chromosomal effect on antioxidant defense through trisomic shift in Lathyrus sativus L. Indian J Fundam Appl Life Sci 1(4):263–273

    Google Scholar 

  • Talukdar D (2011g) Flower and pod production, abortion, leaf injury, yield and seed neurotoxin levels in stable dwarf mutant lines of grass pea (Lathyrus sativus L.) differing in salt stress responses. Int J Curr Res 2(1):46–54

    Google Scholar 

  • Talukdar D (2012a) Ascorbate deficient semi-dwarf asfL1 mutant of Lathyrus sativus exhibits alterations in antioxidant defense. Biol Plant 56(4):675–682

    CAS  Google Scholar 

  • Talukdar D (2012b) Flavonoid-deficient mutants in grass pea (Lathyrus sativus L.): genetic control, linkage relationships, and mapping with aconitase and S nitrosoglutathione reductase isozyme loci. Sci World J 2012:Article ID 345983, 11 pages, doi:10.1100/2012/345983

  • Talukdar D (2012c) A glutathione-overproducing mutant in grass pea (Lathyrus sativus L.): alterations in glutathione content, modifications in antioxidant defense response to cadmium stress and genetic analysis using primary trisomic. Int J Recent Sci Res 3(4):234–243

    Google Scholar 

  • Talukdar D (2012d) Meiotic consequences of selfing in grass pea (Lathyrus sativus L.) autotetraploids in the advanced generations: cytogenetics of chromosomal rearrangement and detection of aneuploids. Nucleus 55(2):73–82

    Google Scholar 

  • Talukdar D (2012e) An induced glutathione-deficient mutant in grass pea (Lathyrus sativus L.): modifications in plant morphology, alteration in antioxidant activities and increased sensitivity to cadmium. Bioremediat Biodivers Bioavailab 6:75–86

    Google Scholar 

  • Talukdar D (2012f) Exogenous calcium alleviates the impact of cadmium-induced oxidative stress in Lens culinaris Medic. seedlings through modulation of antioxidant enzyme activities. J Crop Sci Biotechnol 15(4):325–334

    Google Scholar 

  • Talukdar D (2012g) Total flavonoids, phenolics, tannins and antioxidant activity in seeds of lentil and grass pea. Int J Phytomed 4(4):537–542

    Google Scholar 

  • Talukdar D (2013a) In Vitro antioxidant potential and type II diabetes related enzyme inhibition properties of traditionally processed legume-based food and medicinal recipes in Indian Himalayas. J Appl Pharm Sci 3(1):26–32. doi:10.7324/JAPS.2013.30106

  • Talukdar D (2013b) Antioxidant potential and type II diabetes related enzyme inhibition properties of raw and processed legumes in Indian Himalayas. J Appl Pharm Sci 3(03):013–019

    Google Scholar 

  • Talukdar D (2013c) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19(1):69–79

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talukdar D (2013d) Selenium priming selectively ameliorates weed– induced phytotoxicity by modulating antioxidant defense components in lentil (Lens culinaris Medik.) and grass pea (Lathyrus sativus L.). Annu Rev Res Biol 3(3):195–212

    Google Scholar 

  • Talukdar D (2013e) Floristic compositions and diversity of weed taxa in lentil (Lens culinaris Medik.) fields. Bull Environ Pharmacol Life Sci 2(3):33–39

    Google Scholar 

  • Talukdar D (2013f) Cytogenetics of a reciprocal translocation integrating distichous pedicel and tendril-less leaf mutations in Lathyrus sativus L. Caryologia: Int J Cytol Cytosyst Cytogenet 66(1):21–30

    Google Scholar 

  • Talukdar D, Biswas AK (2002) Characterization of an induced mutant and its inheritance in grass pea (Lathyrus sativus L.). Indian J Genet 62:355–356

    Google Scholar 

  • Talukdar D, Biswas AK (2006) An induced mutant with different flower colour and stipule morphology in Lathyrus sativus L. Indian J Genet 66:365–367

    Google Scholar 

  • Talukdar D, Biswas AK (2007) Seven different primary trisomics in grass pea (Lathyrus sativus L.). I Cytogenetic characterization. Cytologia 72:385–396

    Google Scholar 

  • Talukdar D, Biswas AK (2008) Seven different primary trisomics in grass pea (Lathyrus sativus L.). II. Pattern of transmission. Cytologia 73:129–136

    Google Scholar 

  • Talukdar D, Talukdar T (2003) Inheritance of growth habit and leaf-shape in mungbean [Vigna radiata (L.) Wilczek.]. Indian J Genet 63(2):165–166

    Google Scholar 

  • Talukdar D, Talukdar T (2012) Traditional food legumes in Sikkim Himalayas: preparation of foods, uses and ethnomedicinal perspectives. Int J Curr Res 4(4):64–73

    Google Scholar 

  • Talukdar D, Talukdar T (2013) Catalase-deficient mutants in lentil (Lens culinaris Medik.): perturbations in morpho-physiology, antioxidant redox and cytogenetic parameters. Int J Agric Sci Res 3(2):197–212

    Google Scholar 

  • Talukdar D (2014a) A common bean (Phaseolus vulgaris) mutant with constitutively low cysteine desulfhydrase activity exhibits growth inhibition but uniquely shows tolerance to arsenate stress. Environ Exp Biol 12:73–81

    Google Scholar 

  • Talukdar D (2014b) Differential response of cysteine-deficient lentil (Lens culinaris Medik.) mutants impaired in foliar O-acetylserine(thiol)-lyase expression. Plant Gene Trait 5(5):33–39

    Google Scholar 

  • Talukdar D, Biswas SC, Biswas AK (2001) An induced dwarf mutant of grass pea. Indian J Genet 61(4):383–384

    Google Scholar 

  • Talukdar D, Biswas SC, Biswas AK (2002) An induced flower colour mutant in grass pea (Lathyrus sativus L.). Indian J Genet 62:162

    Google Scholar 

  • Tang X, Szinay D, Lang C, Ramanna MS, van der Vossen EA, Datema E, Lankhorst RK, de Boer J, Peters SA, Bachem C et al (2008) Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 180(3):1319–1328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    PubMed Central  PubMed  Google Scholar 

  • Tiwari VK, Riera-Lizarazu O, Gunn HL, Lopez K, Iqbal MJ et al (2012) Endosperm tolerance of paternal aneuploidy allows radiation hybrid mapping of the wheat D-genome and a measure of γ ray-induced chromosome breaks. PLoS One 7(11):e48815

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomlekova NB (2010) Induced mutagenesis for crop improvement in Bulgaria. Plant Mutat Rep 2(2):4–27

    Google Scholar 

  • Tsai H, Missirian V, Ngo KJ, Tran RK, Chan SR, Vankatesan S, Comai L (2013) Production of a high efficiency TILLING population through polyploidization. Plant Physiol. doi:10.1104/pp.112.213256

  • Tsyganov VE, Voroshilova VA, Rozov SM, Borisov AY, Tikhonovich IA (2013) A new series of pea symbiotic mutants induced in the line SGE. Rus J Genet Appl Res 3(2):156–162

    Google Scholar 

  • Uchida N, Sakamoto T, Kurata T, Tasaka M (2011) Identification of EMS-induced causal mutations in a non-reference Arabidopsis thaliana accession by whole genome sequencing. Plant Cell Physiol 52(4):716–722

    CAS  PubMed  Google Scholar 

  • Valárik M, Bartos J, Kovarova P, Kubalakova M, De Jong JH, Dolezel J (2004) High resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37:940–950

    PubMed  Google Scholar 

  • Varaprasad KS, Sharma SK, Sivaraj N, Sarker A (2011) Integrated gene resource management of underutilized legumes in India. Euphytica 180:49–56

    Google Scholar 

  • Varshney RK, Thudi M, May GD, Jackson SA (2010) Legume genomics and breeding. Plant Breed Rev 33:257–304

    Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC et al (2000) The ROOT MERISTEMLESS/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Voisin D, Nawrath C, Kurdyukov S, Franke RB, Reina-Pinto JJ et al (2009) Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator. PLoS Genet 5(10):e1000703

    PubMed Central  PubMed  Google Scholar 

  • Waminal NE, Park HM, Ryu KB, Kim JH, Yang T-J, Kim HH (2012) Karyotype analysis of Panax ginseng C.A.Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution. Comp Cytogenet 6(4):425–441

    PubMed Central  PubMed  Google Scholar 

  • Wang K, Guo W, Zhang T (2007) Development of one set of chromosome-specific microsatellite-containing BACs and their physical mapping in Gossypium hirsutum L. Theor Appl Genet 115:675–682

    CAS  PubMed  Google Scholar 

  • Weller JL, Hecht V, Liew LC, Sussmilch FC, Bénédicte Wenden B, Knowles CL, Vander Schoor JK (2009) Update on the genetic control of flowering in garden pea. J Exp Bot 60(9):2493–2499

    CAS  PubMed  Google Scholar 

  • Xu SJ, Singh RJ, Kollipara KP, Hymowitz T (2000) Primary trisomics in soybean: origin, identification, breeding behavior, and use in linkage mapping. Crop Sci 40:1543–1551

    Google Scholar 

  • Yang K, Jeong S-C (2008) Genetic linkage map of the nucleolus organizer region in the soybean. Genetics 178(1):605–608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Boateng KA, Yuan L, Wu S, Baskin TI et al (2011) The Radially Swollen 4Separase mutation of Arabidopsis thaliana blocks chromosome disjunction and disrupts the radial microtubule system in meiocytes. PLoS One 6(4):e19459

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang D, Yang Q, Bao W, Zhang Y, Han B, Xue Y, Cheng Z (2005) Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics 169(1):325–335

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zou JJ, Lee J, Singh R, Xu SS, Cregan PB, Hymowitz T (2003) Assignment of molecular linkage groups to the soybean chromosomes by primary trisomics. Theor Appl Genet 107:745–750

    CAS  PubMed  Google Scholar 

  • Zou JJ, Singh RJ, Lee J, Xu SJ, Hymowitz T (2006) SSR markers exhibit trisomic segregation distortion in soybean. Crop Sci 46(4):1456–1461

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Talukdar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Talukdar, D., Sinjushin, A. (2015). Cytogenomics and Mutagenomics in Plant Functional Biology and Breeding. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_5

Download citation

Publish with us

Policies and ethics