Skip to main content

Next-Generation Sequencing and Assembly of Plant Genomes

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Next-generation sequencing technology produces enormous volume of accurate and inexpensive sequence data in a short span of time. Three available common next-generation sequencing (NGS) platforms for genome sequencing are discussed here. The genome assembly and scaffolding algorithms are described with special emphasis on de novo assembly of short-read sequences. The biological applications of next-generation sequencing in plant sciences are covered with examples from plant genomics. An account on future prospects of this technology in plant genome analysis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeel T, Van Parys T, Saeys Y, Galagan J, Van de Peer Y (2012) GenomeView: a next-generation genome browser. Nucleic Acids Res 40:e12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Replacing suffix trees with enhanced suffix arrays. J Discrete Algorithms 2:53–86

    Article  Google Scholar 

  • Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29:521–527

    Article  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108

    Article  CAS  PubMed  Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP, Lander ES (2002) ARACHNE: a whole-genome shotgun assembler. Genome Res 12:177–189

    Article  PubMed Central  CAS  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E et al (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19:1044–1056

    Article  PubMed Central  CAS  Google Scholar 

  • Carver T, Bohme U, Otto T, Parkhill J, Berriman M (2010) BamView: viewing mapped read alignment data in the context of the reference sequence. Bioinformatics 26:676–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carver T, Harris SR, Otto TD, Berriman M, Parkhill J, McQuillan JA (2013) BamView: visualizing and interpretation of next-generation sequencing read alignments. Brief Bioinform 14:203–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaisson MJP, Brinja D, Pevzner PA (2009) De novo fragment assembly with short mate-paired reads: does the read length matter? Genome Res 19:336–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conway T, Wazny J, Bromage A, Zobel J, Beresford-Smith B (2012) Gossamer—a resource-efficient de novo assembler. Bioinformatics 28:1937–1938

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  PubMed  Google Scholar 

  • Dassanayake M, Oh D-H, Haas JS, Hernandez A, Hong H, Ali S, Yun D-J, Bressan RA, Zhu J-K, Bohnert HJ et al (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dayarian A, Michael TP, Sengupta AM (2010) SOPRA: scaffolding algorithm for paired reads via statistical optimization. BMC Bioinf 11:345

    Article  Google Scholar 

  • de la Bastide M, McCombie WR (2007) Assembling genomic DNA sequences with PHRAP. Curr Protoc Bioinform, Chapter 11:Unit 11.4

    Google Scholar 

  • Galinsky VL (2012) YOABS: yet other aligner of biological sequences—an efficient linearly scaling nucleotide aligner. Bioinformatics 28:1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Sung WK, Nagarajan N (2011) Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J Comput Biol 18:1681–1691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109:11872–11877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Gritsenko AA, Nijkamp JF, Reinders MJT, de Ridder D (2012) GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies. Bioinformatics 28:1429–1437

    Article  CAS  PubMed  Google Scholar 

  • Hahn WC, Weinberg RA (2002) Mechanisms of disease: rules for making human tumor cells. N Engl J Med 34:1593–1603

    Article  Google Scholar 

  • Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF, Hackermüller J (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5:e1000502

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang X, Wang J, Aluru S, Yang SP, Hillier L (2003) PCAP: a whole-genome assembly program. Genome Res 13:2164–2170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Article  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J. doi:10.1111/tpj.12173

    PubMed  Google Scholar 

  • Jiang H, Wong WH (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24:2395–2396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J, Larkin DM, Cai Q, Asan ZY, Ge R-L, Auvil L, Capitanu B, Zhang G, Lewin HA, Ma J (2013) Reference-assisted chromosome assembly. Proc Natl Acad Sci U S A 110:1785–1790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed Central  PubMed  Google Scholar 

  • Lam TW, Sung WK, Tam SL, Wong CK, Yiu SM (2008) Compressed indexing and local alignment of DNA. Bioinformatics 24:791–797

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed Central  PubMed  Google Scholar 

  • Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinformatics 11:473–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Ruan J, Durbin R (2008a) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008b) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009a) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009b) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Chen Y, Mu D, Yuan J, Shi Y, Zhang H, Gan J, Li N, Hu X, Liu B, Yang B, Fan W (2012) Comparison of the two major classes of assembly algorithms: overlap–layout–consensus and de-bruijn-graph. Brief Funct Genomics 11:25–37

    Article  PubMed  Google Scholar 

  • Lin H, Zhang Z, Zhang MQ, Ma B, Li M (2008) ZOOM! Zillions of oligos mapped. Bioinformatics 24:2431–2437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Tromp J, Li M (2002) PatternHunter: faster and more sensitive homology search. Bioinformatics 18:440–445

    Article  CAS  PubMed  Google Scholar 

  • Manske HM, Kwiatkowski DP (2009) LookSeq: a browser-based viewer for deep sequencing data. Genome Res 19:2125–2132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCreight EM (1976) A space-economical suffix tree construction algorithm. J ACM 23:262–272

    Article  Google Scholar 

  • Meek C, Patel JM, Kasetty S (2003) OASIS: an online and accurate technique for local-alignment searches on biological sequences. In: Proceedings of 29th international conference on Very Large Data Bases (VLDB 2003), Berlin, pp 910–921

    Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller J, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 14:315–327. doi:10.1016/j.ygeno.2010.03.001

    Article  Google Scholar 

  • Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet–next generation sequence assembly visualization. Bioinformatics 26:401–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li L-T, Zhang Q, Kim M-J, Schatz MC, Campbell M et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn). Genome Biol 14:R41

    Article  PubMed Central  PubMed  Google Scholar 

  • Mullikin JC, Ning Z (2003) The phusion assembler. Genome Res 13:81–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL, Bolanos RA, Chou HH et al (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Myllykangas S, Buenrostro J, Ji HP (2011) Overview of sequencing technology platforms. In: Rodriguez-Ezpeleta N, Hackenberg M, Aransayet AM (eds) Bioinformatics for high throughput sequencing. Springer, New York

    Google Scholar 

  • Park PJ (2009) Chip-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci U S A 98:9748–9753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pop M, Kosack DS, Salzberg SL (2004) Hierarchical scaffolding with Bambus. Genome Res 14:149–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • Qiang X, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi YA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5(5):e1000386. doi:10.1371/journal.pcbi.1000386

    Article  PubMed Central  PubMed  Google Scholar 

  • Salmela L, Mäkinen V, Välimäki N, Ylinen J, Ukkonen E (2011) Fast scaffolding with small independent mixed integer programs. Bioinformatics 27:3259–3265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson JT, Durbin R (2010) Efficient construction of an assembly string graph using the FM-index. Bioinformatics 26:i367–i373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using compressed data structures. Genome Res 22:549–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith AD, Chung WY, Hodges E, Kendall J, Hannon G, Hicks J, Xuan Z, Zhang MQ (2009) Updates to the RMAP short-read mapping software. Bioinformatics 25:2841–2842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song L, Crawford GE (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5384

    PubMed Central  PubMed  Google Scholar 

  • Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, Lewis S (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • van Bakel H, Stout J, Cote A, Tallon C, Sharpe A, Hughes T, Page J (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102

    Article  PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan G, Whaley AM et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech 30:83–89

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2(12):e1326. doi:10.1371/journal.pone.0001326

    Article  PubMed Central  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the domesticated apple (Malus X domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Weese D, Emde AK, Rausch T, Döring A, Reinert K (2009) RazerS–fast read mapping with sensitivity control. Genome Res 19:1646–1654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J, Hu SN, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu Z, Niu B, Chen J, Wu S, Sun S, Li W (2013) MGAviewer: a desktop visualization tool for analysis of metagenomics alignment data. Bioinformatics 29:122–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basant K. Tiwary Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Tiwary, B.K. (2015). Next-Generation Sequencing and Assembly of Plant Genomes. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_3

Download citation

Publish with us

Policies and ethics