Skip to main content

Instrumental Techniques and Methods: Their Role in Plant Omics

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Techniques and methods based on vibrational spectroscopy such as near-infrared reflectance (NIR), mid-infrared (MIR) and Raman spectroscopy are known to be non-destructive and low cost. These characteristics are considered as the most important when these methods or techniques are applied in the field of plant omics. This chapter will provide an overview of the most common vibrational spectroscopy techniques used in the field of plant omic analysis (NIR, MIR, Raman). Information about the hardware (instruments) and software (multivariate data methods) will be also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton MT, Marshall AH (2005) Progress in breeding perennial clovers for temperate agriculture. J Agric Sci 143:117–135

    Article  Google Scholar 

  • Agelet LE, Hurburgh CR (2010) A tutorial on near infrared spectroscopy and its calibration. Crit Rev Anal Chem 40:246–260

    Article  CAS  Google Scholar 

  • Agelet LE, Armstrong PR, Romagosa Clariana I, Hurburgh CR (2012) Measurement of single soybean seed attributes by near infrared technologies. A comparative study. J Agric Food Chem 60:8314–8322

    Article  Google Scholar 

  • Ahmed FE (2002) Detection of genetically modified organisms in foods. Trends Biotechnol 20:215–223

    Article  CAS  PubMed  Google Scholar 

  • Alishahi H, Farahmand H, Prieto N, Cozzolino D (2010) Identification of transgenic foods using NIR spectroscopy: a review. Spectrochim Acta A Mol Biomol Spectrosc 75:1–7

    Article  CAS  PubMed  Google Scholar 

  • Andres S, Giraldez FJ, Lopez S, Mantecon AR, Calleja A (2005) Nutritive evaluation of herbage from permanent meadows by near-infrared reflectance spectroscopy: 1. Prediction of chemical composition and in vitro digestibility. J Sci Food Agric 85:1564–1571

    Article  CAS  Google Scholar 

  • Arngren M, Hansen PW, Eriksen B, Larsen J, Larsen R (2011) Analysis of pregerminated barley using hyperspectral image analysis. J Agric Food Chem 59:11385–11394

    Article  CAS  PubMed  Google Scholar 

  • AOAC (1990) Official methods of analysis of the Association of Official Analytical Chemists, 15th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • Baranska M, Schultz H (2006) Application of infrared and Raman spectroscopy for analysis of selected medicinal and spice plants. J Med Spice Plant (Z Arzn Gew Pfl) 2:72–80

    Google Scholar 

  • Baranska M, Schulz H, Rösch P, Strehle MA, Popp J (2004) Identification of secondary metabolites in medicinal and spice plants by NIR-FT-Raman microspectroscopic mapping. Analyst 129:926–930

    Article  CAS  PubMed  Google Scholar 

  • Baranska M, Schulz H, Strehle M, Popp J (2010) Applications of vibrational spectroscopy to oilseeds analysis. In: Li-Chan E, Griffiths PR, Chalmers JM (eds) Applications of vibrational spectroscopy in food science. Wiley, Chichester

    Google Scholar 

  • Blanco M, Villaroya I (2002) NIR spectroscopy: a rapid-response analytical tool. Trends Anal Chem 21:240–250

    Article  CAS  Google Scholar 

  • Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley, Chichester

    Book  Google Scholar 

  • Brereton RG (2007) Applied chemometrics for scientist. Wiley, Chichester

    Book  Google Scholar 

  • Brereton G (2008) Applied chemometrics for scientist. Wiley, Chichester

    Google Scholar 

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320

    Article  PubMed  Google Scholar 

  • Campbell MR, Sykes J, Glover DV (2000) Classification of single and double-mutant corn endosperm genotypes by near-infrared transmittance spectroscopy. Cereal Chem 77:774–778

    Article  CAS  Google Scholar 

  • Carbonero CH, Mueller-Harvey I, Brown TA, Smith L (2001) Sainfoin a beneficial forage legume. Plant Genet Resour Charact Util 9:70–85

    Article  Google Scholar 

  • Casler M, van Santen E (2010) Breeding objectives in forages. In: Boller B, Posselt U, Veronesi F (eds) Handbook of plant breeding: fodder crops and amenity grasses. Springer, New York, pp 115–160

    Chapter  Google Scholar 

  • Chambers J, Ridgeway C (1995) Rapid detection of contaminants in cereals. In: Davies AMC, Williams P (eds) Near infrared spectroscopy: the future waves. NIR Publications, Chichester, pp 484–489

    Google Scholar 

  • Cozzolino D (2009) Near infrared spectroscopy in natural products analysis. Planta Med 75:746–757

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino D (2011) Infrared methods for high throughput screening of metabolites: food and medical applications. Comb Chem High Throughput Screen 14:125–131

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino D (2012a) Recent trends on the use of infrared spectroscopy to trace and authenticate natural and agricultural food products. Appl Spectrosc Rev 47:518–530

    Article  CAS  Google Scholar 

  • Cozzolino D (2012b) Benefits and limitations of infrared technologies in omic research and development of natural drugs and pharmaceutical products. Drug Dev Res 73:504–512

    Article  CAS  Google Scholar 

  • Cozzolino D, Labandera M (2002) Determination of dry matter and crude protein contents of undried forages by near infrared reflectance spectroscopy. J Sci Food Agric 82:380–384

    Article  CAS  Google Scholar 

  • Dachoupakan Sirisomboon C, Putthang R, Sirisomboon P (2013) Application of near infrared spectroscopy to detect aflatoxigenic fungal contamination in rice. Food Control 33:207–214

    Google Scholar 

  • De Bei R, Sullivan W, Cynkar WU, Cozzolino D, Dambergs RG, Tyerman SD (2011) Non destructive measurement of grapevine water potential using near infrared spectroscopy. Aust J Grape Wine Res 17:62–71

    Article  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  • Fassio A, Cozzolino D (2004) Non-destructive prediction of chemical composition in sunflower seeds by near infrared spectroscopy. Ind Crop Prod 20:321–329

    Article  CAS  Google Scholar 

  • Fox GP, Bloustein G, Sheppard J (2010) On the go NIT technology to assess protein and moisture during harvest of wheat breeding trials. J Cereal Sci 51:171–173

    Article  CAS  Google Scholar 

  • García J, Cozzolino D (2006) Use of near infrared reflectance spectroscopy to predict chemical composition of forages from breeding programs. Agricultura Tecnica (Chile) 66:41–48

    Google Scholar 

  • Gergely S, Salgo A (2005) Changes in carbohydrate content during wheat-maturation-what is measured by near infrared spectroscopy? J Near Infrared Spectrosc 13:9–17

    Article  CAS  Google Scholar 

  • Gottlieb DM, Schultz J, Bruun SW, Jacobsen S, Søndergaard I (2004) Multivariate approaches in plant science. Phytochemistry 65:1531–1548

    Article  CAS  PubMed  Google Scholar 

  • Griffiths PR, De Haseth JA (1986) Fourier transform infrared spectrometry. Wiley, New York

    Google Scholar 

  • Hashimoto A, Kameoka T (2008) Applications of infrared spectroscopy to biochemical, food, and agricultural processes. Appl Spectros Rev 43:416–451

    Article  CAS  Google Scholar 

  • Himmelsbasch DS (2010) The analysis of rice by vibrational spectroscopy. In: Li-Chan E, Griffiths PR, Chalmers JM (eds) Applications of vibrational spectroscopy in food science. Wiley, Chichester

    Google Scholar 

  • Hounsome N, Hounsome B, Tomos D, Edward-Jones G (2008) Plant metabolites and nutritional quality of vegetables. J Food Sci 73:R48–R65

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Yu H, Xu H, Ying Y (2008) Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. J Food Eng 87:303–313

    Article  CAS  Google Scholar 

  • Hurburgh CR, Rippke GR, Heithoff C, Roussel SA, Hardy CL (2000) Detection of genetically modified grains by near-infrared spectroscopy. In: Proceedings PITTCON 2000–science for the 21st century, 12–17 March 2000, New Orleans, USA, p 1431

    Google Scholar 

  • Jespersen BM, Munck L (2009) Cereals and cereal products. In: Sun DW (ed) Infrared spectroscopy for quality analysis and control. Elsevier/Academic, Amsterdam

    Google Scholar 

  • Karoui R, Downey G, Blecker C (2010) Mid-infrared spectroscopy coupled with chemometrics: a tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships – a review. Chem Rev 110:6144–6168

    Article  CAS  PubMed  Google Scholar 

  • Kolukisaoglu U, Thurow K (2010) Future and frontiers of automated screening in plant sciences. Plant Sci 178:476–484

    Article  CAS  Google Scholar 

  • Lavine BK (2006) Clustering and classification of analytical data. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  • Li-Chan ECY (2010) Introduction to vibrational spectroscopy. In: Li-Chan E, Griffiths PR, Chalmers JM (eds) Applications of vibrational spectroscopy in food science. Wiley, Chichester, UK

    Google Scholar 

  • Liu N, Yu P (2010) Characterization of the micro chemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultra spatially resolved synchrotron-based infrared micro spectroscopy. J Agric Food Chem 58:7801–7810

    Article  CAS  PubMed  Google Scholar 

  • Livingston D, Hincha D, Heyer A (2009) Fructan and its relationships to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long DS, Engel RE, Siemens MC (2008) Measuring grain protein concentration with in line near infrared reflectance spectroscopy. Agron J 100:247–252

    Article  CAS  Google Scholar 

  • Lu R (2007) Quality evaluation of fruit by hyperspectral imaging. In: Sun DW (ed) Computer vision technology for food quality. Elsevier, Amsterdam

    Google Scholar 

  • McClure FW (2004) 204 years of near infrared technology: 1800–2003. J Near Infrared Spectros 11:487–488

    Article  Google Scholar 

  • McGoverin CM, Weeranantanaphan J, Downey G, Manley M (2010) The application of near infrared spectroscopy to the measurement of bioactive compounds in food commodities. J Near Infrared Spectros 18:87–111

    Article  CAS  Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    Article  CAS  PubMed  Google Scholar 

  • Montes JM, Technow F, Dhillon BS, Mauch F, Melchinger AE (2011) High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crop Res 121:268–273

    Article  Google Scholar 

  • Morón A, Cozzolino D, García A, Sawchik J (2007) Preliminary study on the use of near infrared reflectance spectroscopy to assess nitrogen content on undried wheat plants. J Sci Food Agric 87:142–157

    Article  Google Scholar 

  • Munck L, Pram Nielsen J, Møller B, Jacobsen S, Søndergaard I, Engelsen SB, Nørgaard L, Bro R (2001) Exploring the phenotypic expression of a regulatory proteome-altering gene by spectroscopy and chemometrics. Anal Chim Acta 446:171–186

    Article  CAS  Google Scholar 

  • Munck L, Møller B, Jacobsen S, Søndergaard S (2004) Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1/3, 1/4)-b-glucan in barley. J Cereal Sci 40:213–222

    Article  CAS  Google Scholar 

  • Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507

    Article  CAS  PubMed  Google Scholar 

  • Naes T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification. NIR Publications, Chichester

    Google Scholar 

  • Nicolai BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J (2007) Non-destructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Post Harv Biol Tech 46:99–118

    Article  Google Scholar 

  • Ridgway C, Chambers J (1996) Detection of external and internal insect infestation in wheat by near-infrared reflectance spectroscopy. J Sci Food Agric 71(2):251–264

    Article  CAS  Google Scholar 

  • Ridgway C, Chambers J (1998) Detection of insects inside wheat kernels by NIR imaging. J Near Infrared Spectrosc 6(1):115–119

    Article  CAS  Google Scholar 

  • Ritsema T, Smeekens S (2003) Fructans: beneficial for plants and humans. Curr Opin Plant Biol 6:223–230

    Article  CAS  PubMed  Google Scholar 

  • Roberts CA, Joost RE, Rottinghaus GE (1997) Quantification of ergovalina in tall fescue by near infrared reflectance spectroscopy. Crop Sci 37:281–284

    Article  Google Scholar 

  • Rodriguez-Saona LE, Allendorf ME (2011) Use of FTIR for rapid authentication and detection of adulteration of food. Annu Rev Food Sci Technol 2:467

    Article  CAS  PubMed  Google Scholar 

  • Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 44:683–690

    Article  CAS  PubMed  Google Scholar 

  • Rossel SA, Hardy CL, Hurburgh CR, Rippke GR (2001) Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn. Appl Spectrosc 55:1425–1432

    Article  Google Scholar 

  • Rui Y, Luo Y, Haung K, Wang W, Zhang L (2005) Discrimination of transgenic corns using NIR diffuse reflectance spectroscopy and back propagation (BP). Spectrosc Spectr Anal 25:1581–1592

    CAS  Google Scholar 

  • Ryan D, Robach K (2006) Metabolomics: the greatest omics of them all? Anal Chem 78:7954–7958

    Article  CAS  PubMed  Google Scholar 

  • Sanada Y, Takai T, Yamada T (2007) Inheritance of the concentration of water soluble carbohydrates and its relationship with the concentration of fibre and crude protein in herbage of cocksfoot (Dactylis glomerata). Grass Forage Sci 62:322–331

    Article  CAS  Google Scholar 

  • Schulz H, Baranska M, Baranski R (2005) Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77:212–221

    Article  CAS  PubMed  Google Scholar 

  • Shetty N, Gislum R (2011) Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR. Field Crop Res 120:31–37

    Article  Google Scholar 

  • Singh CB, Jayas DS, Paliwal J, White NDG (2010) Identification of insect-damaged wheat kernels using shortwave near-infrared hyperspectral and digital colour imaging. Comput Electron Agric 73(2):118–125

    Article  Google Scholar 

  • Smyth HE, Cozzolino D (2011) Applications of infrared spectroscopy for quantitative analysis of volatile and secondary metabolites in plant materials. Curr Bioact Compd 7:66–74

    Article  CAS  Google Scholar 

  • Smyth H, Cozzolino D (2013) Instrumental methods (spectroscopy, electronic nose and tongue) as tools to predict taste and aroma in beverages: advantages and limitations. Chem Rev 113:1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Stratis DN, Eland KL, Carter JC, Tomlinson SJ, Angel SM (2001) Comparison of acoustic-optic and liquid crystal tunable filters for laser induced breakdown spectroscopy. Appl Spectrosc 55:999–1004

    Article  CAS  Google Scholar 

  • Subramanian A, Rodrigez-Saona L (2009) Fourier transform infrared (FTIR) spectroscopy. In: Sun DW (ed) Infrared spectroscopy for food quality analysis and control. Academic, Oxford, pp 146–174

    Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Last RL, Fernie AR (2004) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132:420–425

    Article  Google Scholar 

  • Velasco L, Pérez-Vich B, Fernandez-Martinez JM (1999) Non-destructive screening for oleic and linoleic acid in single sunflower achenes by near infrared reflectance spectroscopy. Crop Sci 39:219–222

    Article  CAS  Google Scholar 

  • Walter A, Studer B, Kolliker R (2012) Advanced phenotyping offers opportunities for improved breeding of forages and turfs species. Ann Bot 110:171–1279

    Article  Google Scholar 

  • Wetzel D, Brewer L (2010) Applications of vibrational spectroscopy to oilseeds analysis. In: Li-Chan E, Griffiths PR, Chalmers JM (eds) Applications of vibrational spectroscopy in food science. Wiley, Chichester, UK

    Google Scholar 

  • White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun J, Hunsaker DJ, Jenks MA, Kimball BA, Roth RL, Strand RJ, Thorp KR, Wall GA, Wang G (2012) Field-based phenomics for plant genetics research. Field Crop Res 133:101–112

    Article  Google Scholar 

  • Williams P (2010) The analysis of wheat by near infrared spectroscopy. Applications of vibrational spectroscopy to oilseeds analysis. In: Li-Chan E, Griffiths PR, Chalmers JM (eds) Applications of vibrational spectroscopy in food science. Wiley, Chichester, UK

    Google Scholar 

  • Woodcock T, Downey G, O’Donnell CP (2008) Better quality food and beverages: the role of near infrared spectroscopy. J Near Infrared Spectros 16:1–29

    Article  CAS  Google Scholar 

  • Yu P (2005) Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based Fourier transform infrared (FTIR) micro spectroscopy. J Agric Food Chem 53:7115–7127

    Article  CAS  PubMed  Google Scholar 

  • Yu P (2007) Molecular chemical structure of barley proteins revealed by ultra-spatially resolved synchrotron light source FTIR micro spectroscopy: comparison of barley varieties. Biopolymers 85:308–317

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Doiron K, Liu D (2008) Shining light on the differences in molecular structural chemical make-up and the cause of distinct degradation behaviour between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach. J Agric Food Chem 56:3417–3426

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Block HC, Doiron K (2009) Understanding the differences in molecular conformation of carbohydrate and protein in endosperm tissues of grains with different biodegradation kinetics using advanced synchrotron technology. Spectrochim Acta A Mol Biomol Spectrosc 71:1837–1844

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Damiran D, Azarfar A, Niu Z (2011) Detecting molecular features of spectra mainly associated with structural and non-structural carbohydrates in co-products from bioethanol production using DRIFT with uni- and multivariate molecular spectral analyses. Int J Mol Sci 12:1921–1935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Yu P (2012) Using ATR-FT/IR molecular spectroscopy to detect effects of blend DDGS inclusion level on the molecular structure spectral and metabolic characteristics of the proteins in hulless barley. Spectrochim Acta A Mol Biomol Spectrosc 95:53–63

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:310–317

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by Australia’s grain growers through their investment body the Grain Research and Development Corporation, with matching funds from the Australian government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cozzolino Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Cozzolino, D., Fassio, A., Restaino, E., Vicente, E. (2015). Instrumental Techniques and Methods: Their Role in Plant Omics. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_2

Download citation

Publish with us

Policies and ethics