Skip to main content

Plant Cytomics: Novel Methods to View Molecules on the Move

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

We provide our definition and the brief history of “cytomics” followed by an overview of general methodological approaches of optical imaging, especially fluorescence microscopy. We then go into detail on novel fluor-linking agents (nanobodies, aptamers, and aldehydes) and the array of novel fluors available. We describe many of the new techniques developed for superfast, super-resolution microscopy (photoreactivated localization microscopy, structured illumination microscopy, stimulated emission depletion microscopy, and stochastic optical reconstruction microscopy) followed by quantitative microscopy and image analysis. We then delve into unconventional methods, novel light systems, and alternatives to fluorescence (non-liner optical imaging, single-molecule light absorption, luminescent proteins). We then describe how these systems have been employed recently for proteins, nucleic acids, the cytoskeleton, and also small molecules of major interest to plants. We finish with a description of recent findings specific to plant cytomics and furnish several impressive images and other illustrations from the recent plant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3B:

Bayesian analysis of bleaching and blinking

CCD:

Charged couple devices

CFP:

Cyano fluorescent protein

CMOS:

Complementary metal oxide semiconductor

CNOI:

Coherent nonlinear optical imaging

DNA:

Deoxyribonucleic acid

dSTORM:

Direct stochastic optical reconstruction microscopy

FLISM:

Fluorescence light sheet microscopy

FOV:

Field of view

FRET:

Fluorescence (or Förster) resonance energy transfer

FPALM:

Fluorescence photoactivation localization microscopy

GFP:

Green fluorescent protein

LED:

Light-emitting diode

NLDOM:

Nonlinear dissipation optical microscopy

OMERO:

Open microscopy environment remote objects

PALM:

Photoactivation localization microscopy

PGS:

Parametric generation spectroscopy

PM:

Plasma membrane

PPS:

Pump–probe spectroscopy

PY1-ME:

Peroxy yellow 1 methyl ester

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

RUM:

Really unconventional microscopy

SELEX:

Systemic evolution of ligands by exponential enrichment

SIM:

Structured illumination microscopy

SNAP:

Soluble N-ethylmaleimide-sensitive factor-attachment proteins

SPIM:

Selective plane illumination microscopy

SR:

Super-resolution

SSIM:

Saturated structured illumination microscopy

STED:

Stimulated emission depletion

STORM:

Stochastic optical reconstruction microscopy

tFT:

tandem Fluorescent protein timer

TRUE:

Time-reversed ultrasound encoded

TULIP:

Tunable light-inducible protein tag

YFP:

Yellow fluorescent protein

References

  • Adam V, Moeyaert B, David CC, Mizuno H, Lelimousin M et al (2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18:1241–1251

    CAS  PubMed  Google Scholar 

  • Allan C, Burel J-M, Moore J, Blackburn C, Linkert M et al (2012) OMERO: flexible, model-driven data management for experimental biology. Nat Methods 9:245–253

    PubMed Central  CAS  PubMed  Google Scholar 

  • Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ (2007) Label-free, single-molecule detection with optical microcavities. Science 317:783–787

    CAS  PubMed  Google Scholar 

  • Baker M (2012a) Robert E Murphy: creating algorithms to turn images into cell models. Nat Methods 9:629

    CAS  Google Scholar 

  • Baker M (2012b) Susan Cox: using Bayesian statistics to speed super-resolution microscopy. Nat Methods 9:113

    CAS  PubMed  Google Scholar 

  • Baker M (2012c) RNA imaging in situ. Nat Methods 9:787–790

    CAS  Google Scholar 

  • Benke A, Manley S (2012) Live-cell dSTORM of cellular DNA based on direct DNA labeling. ChemBioChem 13:298–301

    CAS  PubMed  Google Scholar 

  • Benndorf D, von Bergen M, Jehmlich N, Völker U, Schmidt F et al (2010) Advanced tool for characterization of microbial cultures by combining cytomics and proteomics. Appl Microbiol Biotechnol 88:575–584

    PubMed  Google Scholar 

  • Bernas T, Gregori G, Asem EK, Robinson JP (2006) Integrating cytomics and proteomics. Mol Cell Proteomics 5:2–13

    CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CAS  PubMed  Google Scholar 

  • Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V et al (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106

    CAS  PubMed  Google Scholar 

  • Celebrano M, Kukura P, Renn A, Sandoghdar V (2011) Single-molecule imaging by optical absorption. Nat Photonics 5:95–98

    CAS  Google Scholar 

  • Chieco P, Jonker A, DeBoer BA, Ruijter JM, Van Noorden CJF (2013) Image cytometry: protocols for 2D and 3D quantification in microscopic images. Prog Histochem Cytochem 47:211–333

    PubMed  Google Scholar 

  • Cho BH, Cao-Berg I, Bakal JA, Murphy RF (2012) SimuCell: a flexible framework for creating synthetic microscopy images. Nat Methods 9:634–635

    Google Scholar 

  • Choi W-G, Swanson SJ, Gilroy S (2012) High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors. Plant J 70:118–128

    CAS  PubMed  Google Scholar 

  • Choi S, Tamaki T, Ebine K, Uemura T, Ueda T, Nakano A (2013) RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. Plant Cell 25:1174–1187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chong S, Min W, Sunney X, Xie XS (2010) Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J Phys Chem Lett 1:3316–3322

    CAS  Google Scholar 

  • Coltharp C, Xiao J (2012) Superresolution microscopy for microbiology. Cell Microbiol 14:1808–1818

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT et al (2012) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 9:195–200

    CAS  Google Scholar 

  • Davidson MW, Murphy DB (2012) Fundamentals of light microscopy and electronic imaging, 2nd edn. Wiley-Blackwell, Hoboken, NJ, USA

    Google Scholar 

  • Davies E (1987) Wound responses in plants. Biochem Plants 12:243–264

    CAS  Google Scholar 

  • Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton and gene expression: a hypothesis on the coherence of the cellular responses to environmental insult. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants – neuronal aspects of plant life. Springer, Berlin/Heidelberg, pp 309–320

    Google Scholar 

  • Davies E, Abe S, Larkins BA, Clore AM, Quatrano RS, Weidner S (1998) The role of the cytoskeleton in plant protein synthesis. In: Bailey-Serres J, Gallie DR (eds) A look beyond transcription: mechanisms determining mRNA stability and translation in plants. American Society of Plant Physiologists, Rockville, Maryland, USA, pp 115–124

    Google Scholar 

  • Davies E, Stankovic B, Azuma K, Shibata K, Abe S (2001) Novel components of the plant cytoskeleton: a beginning to plant “cytomics”. Plant Sci 160:185–196

    CAS  PubMed  Google Scholar 

  • Davies E, Stankovic B, Vian A, Woods A (2012) Where has all the message gone? Plant Sci 185:23–32

    PubMed  Google Scholar 

  • Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2012) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 9:1027–1036

    Google Scholar 

  • Elgass K, Caesar K, Schleifenbaum F, Stierhof Y-D, Meixner AJ, Harter K (2009) Novel application of fluorescence lifetime and fluorescence microscopy enables quantitative access to subcellular dynamics in plant cells. PLoS One 9(e5716):1–13

    Google Scholar 

  • Evanko D (2007) Incredible shrinking optics. Nat Methods 4:683

    CAS  Google Scholar 

  • Evanko D (2009) Primer: fluorescence imaging under the diffraction limit. Nat Methods 6:19–20

    CAS  Google Scholar 

  • Evanko D (2012a) More dyes enter the realm of nanoscopy. Nat Methods 9:944

    CAS  PubMed  Google Scholar 

  • Evanko D (2012b) Better resolution for structured-illumination microscopy. Nat Methods 9:124

    CAS  PubMed  Google Scholar 

  • Evanko D (2012c) A microscopic endoscope. Nat Methods 9:128

    CAS  PubMed  Google Scholar 

  • Federici F, Dupuy L, Laplaze L, Heisler M, Haseloff J (2012) Integrated genetic and computation methods for in planta cytometry. Nat Methods 9:483–485

    CAS  PubMed  Google Scholar 

  • Gaiduk A, Yorulmaz M, Ruijgrok PV, Orrit M (2010) Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330:353–356

    CAS  PubMed  Google Scholar 

  • Greenbaum A, Luo W, Su T-W, Gorocs Z, Xue L et al (2012) Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat Methods 9:889–895

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit VS, Quake SR (2011) The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23:4234–4240

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grossmann G, Meier M, Cartwright HN, Sosso D, Quake SR et al (2012) Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J Vis Exp 65:e4290

    Google Scholar 

  • Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102:13081–13086

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gutierrez R, Grossmann G, Frommer WB, Ehrhardt DW (2010) Opportunities to explore plant membrane organization with super-resolution microscopy. Plant Physiol 154:463–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151

    CAS  PubMed  Google Scholar 

  • He H, Li S, Wang S, Hu M, Cao Y, Wang C (2012) Manipulation of light from green fluorescent protein by femtosecond laser. Nat Photonics 6:651–656

    CAS  Google Scholar 

  • Hofkens J, Roeffaers MBJ (2011) Single-cell molecule light absorption. Nat Photonics 5:80–81

    CAS  Google Scholar 

  • Huang B, Jones SA, Brandenburg B, Xhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5:1047–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang B, Bates M, Zhuang W (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang B, Babcock H, Zhuang XW (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khmelinskii A, Keller PJ, Bartosik A, Meurer M, Barry JD et al (2012) Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat Biotechnol 30:708–714

    CAS  PubMed  Google Scholar 

  • Klein T, Loschberger A, Proppert S, Wolter S, van de Linde S, Sauer M (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8:7–9

    CAS  PubMed  Google Scholar 

  • Kner P, Chhun BB, Griffis R, Winoto L, Gustafsson MGL (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6:339–342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53:186–196

    CAS  PubMed  Google Scholar 

  • Kriete A (2005) Cytomics in the realm of systems biology. Cytometry 68A:19–20

    CAS  Google Scholar 

  • Lau L, Lee YL, Sahi SJ, Steams T, Moemer WE (2012) STED microscopy with optimized labeling density reveals 9-fold arrangement of centriole protein. Biophys J 102:2925–2935

    Google Scholar 

  • Lee J, Miyanaga Y, Ueda M, Hohng S (2012) Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. Biophys J 103:1691–1697

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leif RC (2009) Towards the integration of cytomics and medicine. J Biophotonics 2:482–493

    PubMed  Google Scholar 

  • Leung BO, Chou KC (2011) Review of super-resolution fluorescence microscopy for biology. Appl Spectrosc 65:967–980

    CAS  PubMed  Google Scholar 

  • Li R, Liu P, Wan Y, Chen T, Wang Q et al (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24:2105–2122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2:910–919

    CAS  PubMed  Google Scholar 

  • Lidke KA (2012) Super resolution for common probes and common microscopes. Nat Methods 9:139–141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lippincott-Schwarz J, Manley S (2009) Putting super-resolution microscopy to work. Nat Methods 6:21–23

    Google Scholar 

  • Lukyanov KA, Belousov VV (2012) The slow fade of cell fluorescence. Nat Photonics 6:641–643

    CAS  Google Scholar 

  • Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EHK (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385

    CAS  PubMed  Google Scholar 

  • Miller EW, Dickinson BS, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A 107:15681–15686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Min W, Freudiger CW, Lu S, Xie XS (2011) Coherent non-linear optical imaging: beyond fluorescence microscopy. Annu Rev Phys Chem 62:507–530

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miwa H, Sun J, Oldroyd GED, Downie JA (2006) Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J 48:883–894

    CAS  PubMed  Google Scholar 

  • Müller S (2008) Cytomics reaches microbiology – population heterogeneity on the protein level caused by stress. Cytometry 73A:3–4

    Google Scholar 

  • Murphy RF (2005) Cytomics and localized proteomics: automated interpretation of the subcellular patterns in fluorescence microscope images. Cytometry 62A:1–3

    Google Scholar 

  • Nakamura M, Ehrhardt DW, Hashimoto T (2010) Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat Cell Biol 12:1064–1070

    CAS  PubMed  Google Scholar 

  • Nature (2009) Collections: super-resolution microscopy. Available at http://nature.com/nmeth/collections/superresmicroscopy

  • Nawy T (2012) Reporting plant hormones levels: a disappearing act. Nat Methods 9:219

    CAS  Google Scholar 

  • Okumoto S, Jones A, Frommer WB (2012) Quantitative imaging with biosensors. Annu Rev Plant Biol 63:663–706

    CAS  PubMed  Google Scholar 

  • Opazo F, Levy M, Byrom M, Schafer C, Geisler C et al (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9:938–939

    CAS  PubMed  Google Scholar 

  • Pastrana E (2011) Fast 3D super-resolution fluorescence microscopy. Nat Methods 8:46

    CAS  Google Scholar 

  • Pastrana E (2012) For every protein its tag. Nat Methods 9:941

    CAS  PubMed  Google Scholar 

  • Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Super resolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petty HR (2007) Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology. Microsc Res Tech 70:687–709

    PubMed  Google Scholar 

  • Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA et al (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 5:417–423

    Google Scholar 

  • Poser I et al (2008) BAC TransgeneOmics: a high throughput method for exploration of protein function in mammals. Nat Methods 5:409–415

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rajaram S, Pavie B, Hac NEF, Altschuler SJ, Wu LF (2012a) PhenoRipper: software for rapidly profiling microscopy images. Nat Methods 9:635–637

    CAS  PubMed  Google Scholar 

  • Rajaram S, Pavie B, Hac NEF, Altschuler SJ, Wu LF (2012b) SimuCell: a flexible framework for creating synthetic microscope images. Nat Methods 9:634–635

    CAS  PubMed  Google Scholar 

  • Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MGL (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109:135–143

    Google Scholar 

  • Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584

    CAS  PubMed  Google Scholar 

  • Robinson JP (2008) Cytometry and the dawn of the cytomics generation. Cytometry 73A:51–52

    Google Scholar 

  • Saito K, Chang Y-F, Horikawa K, Hatsugai N, Higuchi Y et al (2012) Luminescent proteins for high-speed single-cell and whole-body imaging. Nat Commun 3:1262. doi:10.1038/ncomms2248

    PubMed Central  PubMed  Google Scholar 

  • Sarov M et al (2012) A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell 150:855–866

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schnell U, Dijk F, Sjollema KA, Giepmans BNG (2012) Immunolabeling artifacts and the need for live-cell imaging. Nat Methods 9:152–158

    CAS  PubMed  Google Scholar 

  • Shao L, Kner P, Rego EH, Gustafsson MGL (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8:1044–1046

    CAS  PubMed  Google Scholar 

  • Shaw SL, Ehrhardt DW (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol 64:351–375

    CAS  PubMed  Google Scholar 

  • Shi X, Jung Y, Lin L-J, Liu C, Wu C, Cann IKO, Ha T (2012) Quantitative fluorescent labeling of aldehyde-tagged proteins for single-molecule imaging. Nat Methods 9:499–503

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shibata K, Morita Y, Abe S, Stankovic B, Davies E (1999) Apyrase from pea stems: isolation, purification, characterization and identification of a NTPase from the cytoskeleton fraction of pea stem tissue. Plant Physiol Biochem 37:1–8

    Google Scholar 

  • Sparkes I, Brandizzi F (2012) Fluorescent protein-based technologies: shedding new light on the plant endomembrane system. Plant J 70:96–107

    CAS  PubMed  Google Scholar 

  • Stankovic B, Clore A, Shunnosuke A, Larkins B, Davies E (2000) Actin in protein synthesis and protein body formation. In: Staiger CJ, Baluska F, Volkmann D, Barlow P (eds) Actin: a dynamic framework for multiple cellular functions. Kluwer Acad. Publishers, Dordrecht, pp 129–143

    Google Scholar 

  • Strickland D, Lin Y, Wagner E, Hope CM, Zayner J et al (2012) TULIPS: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9:379–384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Swanson SJ, Choi WG, Chanoca A, Gilroy S (2011) In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62:273–297

    CAS  PubMed  Google Scholar 

  • Tagore S, Gomase VS (2008) Cytomics. Curr Drug Metab 9:263–266

    PubMed  Google Scholar 

  • Támok A (2010) Cytomics for discovering drugs. Cytometry 77A:1–2

    Google Scholar 

  • Támok A, Bocsi J (2009) Cytomics and regenerative medicine. Cytometry 75A:707–708

    Google Scholar 

  • Tønnesen J, Nadrigny F, Willig KI, Wedlich-Soldner R, Nagerl UV (2011) Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 101:2545–2552

    PubMed Central  PubMed  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  • Tsien RY (2010) Nobel lecture: constructing and exploiting the fluorescent protein paint box. Integr Biol 2:77–93

    CAS  Google Scholar 

  • Tyagi S (2009) Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 6:331–338

    CAS  PubMed  Google Scholar 

  • Ulrich A, Martins AHB, Pesquero JB (2004) RNA and DNA aptamers in cytomics analysis. Cytometry 59A:220–231

    CAS  Google Scholar 

  • van de Linde S, Heilemann M, Sauer M (2012) Live-cell superresolution imaging with synthetic fluorophores. Annu Rev Phys Chem 63:519–540

    PubMed  Google Scholar 

  • Wang YM, Judkewitz B, DiMarzio CA, Yang C (2012) Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound encoded light. Nat Commun 3:928. doi:10.1038/ncomms1925

    PubMed Central  PubMed  Google Scholar 

  • Weil TT, Parton RM, Davis I (2010) Making the message clear: visualizing mRNA localization. Trends Cell Biol 20:380–390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320:246–249

    CAS  PubMed  Google Scholar 

  • Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7:717–719

    CAS  PubMed  Google Scholar 

  • Wu B, Chao JA, Singer RH (2012) Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys J 102:2935–2944

    Google Scholar 

  • Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9:185–188

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada T, Yoshimura H, Inaguma A, Ozawa T (2011) Visualization of non-engineered single mRNAs in living cells using genetically encoded fluorescent probes. Anal Chem 83:5708–5714

    CAS  PubMed  Google Scholar 

  • Yan R, Park Y-H, Choi Y, Heo C-J, Yang S-M, Lee LP, Yang P (2012) Nanowire-based single-cell endoscopy. Nat Nanotechnol 7:191–196

    CAS  Google Scholar 

  • Zanacchi FC, Lavagnino Z, Donnorso MP, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8:1047–1049

    CAS  Google Scholar 

  • Zhuang W (2009) Nano-imaging with STORM. Nat Photonics 3:365–367

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Davies Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Davies, E., Stankovic, B. (2015). Plant Cytomics: Novel Methods to View Molecules on the Move. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_14

Download citation

Publish with us

Policies and ethics