Skip to main content

Plant Secretomics: Unique Initiatives

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Plant secretomics is an emerging subfield of proteomics studying proteins globally secreted into the extracellular space (apoplast) by plant cells at defined time under constitutive or induced conditions. Plant secretome has important biological functions in cell wall structure formation, cell-to-cell interaction, extracellular/intracellular signal relay and appropriate cellular response to environmental stimuli. It also regulates the ability or inability of the host to trigger the defence system against the invading pathogen. Defence proteins are secreted via a classical pathway involving N-terminal signal peptide which directs the protein to the ER for routing, modification and subsequent secretion involving the endoplasmic reticulum (ER)–Golgi–trans-Golgi network (TGN)–plasma membrane system. Plant secretome has an increasing number of proteins following unconventional, ER–Golgi-independent or ‘leaderless’ apoplastic protein secretion mechanisms. Nonconventional mechanisms would be necessary if the presence of a protein in the ER/Golgi disrupts ER functioning or has multiple functions, each occurring in different cellular compartment. A large number of apoplastic leaderless secretome proteins have been identified that play an important role under salinity, low temperature, ion homeostasis and pathogen invasion. Characterisation of secretome is a formidable task, and success can be obliged to the advancement in biochemical, proteomic techniques, mass spectroscopy and bioinformatics. Advanced proteomic technologies established detailed secretome profiles from normal and stressed cell types at a faster pace. Discrimination of the true secretome from those released under environmental stresses is a big challenge. It warrants improved strategies to investigate the secretomes with high sensitivity and reproducibility. The comprehensive mechanisms regulating constitutive and induced secretome of diverse plants and their habitat are future perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10(4):799–827

    CAS  PubMed  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell. Garland Science, Taylor & Francis Group, New York

    Google Scholar 

  • Alvarez S, Goodger JQD, Marsh EL, Chen S, Asirvatham VS, Schachtman DP (2006) Characterization of the maize xylem sap proteome. J Proteome Res 5:963–972

    CAS  PubMed  Google Scholar 

  • An Q, Hückelhoven R, Kogel KH, Van Bel AJE (2006) Multivesicular bodies participate in a cell wall associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8:1009–1019

    CAS  PubMed  Google Scholar 

  • Auron PE, Warner SJC, Webb AC, Cannon JG, Bernheim HA, McAdam KJPW, Rosenwasser LJ, LoPreste G, Mucci SF, Dinarello CA (1987) Studies on the molecular nature of human interleukin 1. J Immunol 138:1447–1456

    CAS  PubMed  Google Scholar 

  • Backhaus R, Zehe C, Wegehingel S, Kehlenbach A, Schwappach B, Nickel W (2004) Unconventional protein secretion: membrane translocation of FGF-2 does not require protein unfolding. J Cell Sci 117:1727–1736

    CAS  PubMed  Google Scholar 

  • Bednarek P, Kwon C, Schulze-Lefert P (2010) Not a peripheral issue: secretion in plant–microbe interactions. Curr Opin Plant Biol 13:378–387

    CAS  PubMed  Google Scholar 

  • Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356

    CAS  PubMed  Google Scholar 

  • Bindschedler LV, Laurence V, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerre-Tugaye M-T, Pont-Lezica R (2005) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5:212–221

    CAS  PubMed  Google Scholar 

  • Bouws H, Wattenberg A, Zorn H (2008) Fungal secretomes-nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 80:381–388

    CAS  PubMed  Google Scholar 

  • Bowles DJ (1990) Defence-related proteins in higher plants. Annu Rev Biochem 59:873–907

    CAS  PubMed  Google Scholar 

  • Briceno Z, Almagro L, Sabater-Jara AB, Calderon AA, Pedreno MA, Ferrer MA (2012) Enhancement of phytosterols, taraxasterol and induction of extracellular pathogenesis-related proteins in cell cultures of Solanum lycopersicum cv Micro-Tom elicited with cyclodextrins and methyl jasmonate. J Plant Physiol 169:1050–1058

    CAS  PubMed  Google Scholar 

  • Brodsky JL (1996) Post-translational protein translocation: not all hsc70s are created equal. Trends Biochem Sci 21:122–126

    CAS  PubMed  Google Scholar 

  • Brodsky JL, Schekman R (1993) A Sec63p-BiP complex from yeast is required for protein translocation in a reconstituted proteoliposome. J Cell Biol 123:1355–1363

    CAS  PubMed  Google Scholar 

  • Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293

    CAS  PubMed  Google Scholar 

  • Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671–682

    CAS  PubMed  Google Scholar 

  • Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MWY, Pimpl P, Jiang L (2011) Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. Plant J 65:882–896

    CAS  PubMed  Google Scholar 

  • Cai Y, Zhuang X, Wang J, Wang H, Lam SK, Gao C, Wang X, Jiang L (2012) Vacuolar degradation of two integral plasma membrane proteins, AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment mediated in plant cells. Traffic 13:1023–1040

    CAS  PubMed  Google Scholar 

  • Cheng FY, Blackburn K, Lin YM, Goshe MB, Williamson JD (2009a) Absolute protein quantification by LC/MS(E) for global analysis of salicylic acid-induced plant protein secretion responses. J Proteome Res 8:82–93

    CAS  PubMed  Google Scholar 

  • Cheng FY, Zamski E, Guo W, Pharr DM, Williamson JD (2009b) Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase (MTD): a possible defense against mannitol secreting fungal pathogens. Planta 230:1093–1103

    CAS  PubMed  Google Scholar 

  • Chirico WJ, Waters MG, Blobel G (1988) 70 K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810

    CAS  PubMed  Google Scholar 

  • Chivasa S, Simon WJ, Yu XL, Yalpani N, Slabas AR (2005) Pathogen elicitor–induced changes in the maize extracellular matrix proteome. Proteomics 5:4894–4904

    CAS  PubMed  Google Scholar 

  • Cho WK, Chen XY, Chu H, Rim Y, Kim S, Kim ST, Kim SW, Park ZY, Kim JY (2009) The proteomic analysis of the secretome of rice calli. Plant Physiol 135:331–341

    CAS  Google Scholar 

  • Chong YT, Gidda SK, Sanford C, Parkinson J, Mullen RT, Goring DR (2010) Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol 185:401–419

    CAS  PubMed  Google Scholar 

  • Corsi AK, Schekman R (1996) Mechanism of polypeptide translocation into the endoplasmic reticulum. J Biol Chem 271:30299–30302

    CAS  PubMed  Google Scholar 

  • Cottingham K (2008) Unlocking the secrets of the rice secretome. J Proteome Res 7:5072

    CAS  PubMed  Google Scholar 

  • Curto M, Camafeita E, Lopez JA, Maldonado AM, Rubiales D, Jorrin JV (2006) A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 6:163–174

    Google Scholar 

  • Dafoe NJ, Constabel CP (2009) Proteomic analysis of hybrid poplar xylem sap. Phytochemistry 70:856–863

    CAS  PubMed  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RR (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    CAS  PubMed  Google Scholar 

  • Denny PW, Gokool S, Russell DG, Field MC, Smith DF (2000) Acylation-dependent protein export in Leishmania. J Biol Chem 275:11017–11025

    CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Ros-Barcelo A, Martinez-Gomez P, Hernandez JA (2006) The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J Exp Bot 57:3813–3824

    CAS  PubMed  Google Scholar 

  • Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L (2012) Unconventional protein secretion. Trends Plant Sci 17(10):606–615

    CAS  PubMed  Google Scholar 

  • Djordjevic MA, Oakes M, Li DX, Hwang CH, Hocart CH, Gresshoff PM (2007) The Glycine max xylem sap and apoplast proteome. J Proteome Res 6:3771–3779

    CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971

    CAS  PubMed  Google Scholar 

  • Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133:1935–1946

    PubMed Central  CAS  PubMed  Google Scholar 

  • Floerl S, Druebert C, Majcherczyk A, Karlovsky P, Kues U, Polle A (2008) Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms. BMC Plant Biol 8:129. doi:10.1186/1471-2229-8-129

    PubMed Central  PubMed  Google Scholar 

  • Floerl S, Majcherczyk A, Possienke M, Feussner K, Tappe H, Gatz C, Feussner I, Kues U, Polle A (2012) Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PLoS One 7:e31435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gabe Lee MT, Mishra A, Lambright DG (2009) Structural mechanisms for regulation of membrane traffic by Rab GTPases. Traffic 10:1377–1389

    Google Scholar 

  • Gao C, Yu CK, Qu S, San MW, Li KY, Lo SW, Jiang L (2012) The Golgi-localized Arabidopsis endomembrane protein12 contains both endoplasmic reticulum export and Golgi retention signals at its C terminus. Plant Cell 24:2086–2104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Glick BS (1995) Can Hsp70 proteins act as force-generating motors? Cell 80:11–14

    CAS  PubMed  Google Scholar 

  • Goldberg T, Hamp T, Rost B (2012) LocTree2 predicts localization for all domains of life. Bioinformatics 28:i458–i465

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420

    CAS  PubMed  Google Scholar 

  • Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M (2001) Interrelating different types of genomic data, from proteome to secretome: ’oming in on function. Genome Res 11:1463–1468

    CAS  PubMed  Google Scholar 

  • Gupta R, Deswal R (2012) Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Proteome Res 11:2684–2696. dx.doi.org/10.1021/pr200944z

  • Gupta S, Wardhan V, Verma S, Gayali S, Rajamani U, Datta A, Chakraborty S, Chakraborty N (2011) Characterization of the secretome of chickpea suspension culture reveals pathway abundance and the expected and unexpected secreted proteins. J Proteome Res 10:5006–5015

    CAS  PubMed  Google Scholar 

  • Hathout Y (2007) Approaches to the study of the cell secretome. Expert Rev Proteomics 4:239–248

    CAS  PubMed  Google Scholar 

  • Hatsugai N, Hara-Nishimura I (2010) Two vacuole-mediated defence strategies in plants. Plant Signal Behav 5:1568–1570

    PubMed Central  PubMed  Google Scholar 

  • Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DSC (1995) Antifreeze proteins in winter rye are similar to pathogenesis related proteins. Plant Physiol 109:878–889

    Google Scholar 

  • Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11:556–566

    PubMed Central  CAS  PubMed  Google Scholar 

  • Isaacson T, Rose JKC (2006) The plant cell wall proteome, or secretome. In: Finnie C (ed) Plant proteomics, vol 28, Annual Plant Reviews Series. Blackwell Publishing, Oxford, pp 185–209

    Google Scholar 

  • Jones AM, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jung C, Lyou SH, Yeu SY, Kim MA, Lee JS, Choi YD, Cheong JJ (2007) Microarray-based screening of jasmonate responsive genes in Arabidopsis thaliana. Plant Cell Rep 26:1053–1063

    CAS  PubMed  Google Scholar 

  • Jurgens G, Geldner N (2007) The high road and the low road: trafficking choices in plants. Cell 130:977–979

    PubMed  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103:11086–11091

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036

    CAS  PubMed  Google Scholar 

  • Kamoun S (2009) The secretome of plant-associated fungi and oomycetes. In: Deising VH (ed) Plant relationships, 2nd edn, The Mycota. Springer, Berlin/Heidelberg, pp 173–180

    Google Scholar 

  • Kim ST, Kang YH, Wang Y, Wu J, Park ZY, Rakwal R, Agrawal GK, Lee SY, Kang KY (2009) Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics 9:1302–1313

    CAS  PubMed  Google Scholar 

  • Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198

    CAS  PubMed  Google Scholar 

  • Knowles MR, Cervino S, Skynner HA, Hunt SP, de Felipe C, Salim K, Meneses-Lorente G, McAllister G, Guest PC (2003) Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics 3:1162–1171

    CAS  PubMed  Google Scholar 

  • Krause C, Richter S, Knöll C, Jürgens G (2013) Plant secretome – from cellular process to biological activity. Biochim et Biophys Acta http://dx.doi.org/10.1016/j.bbapap.2013.03.024

  • Lam SK, Tse YC, Robinson DG, Jiang L (2007) Tracking down the elusive early endosome. Trends Plant Sci 12:497–505

    CAS  PubMed  Google Scholar 

  • Lam SK, Cai Y, Hillmer S, Robinson DR, Jiang L (2008) SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. Plant Physiol 147:1637–1645

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee J, Bricker TM, Lefevre M, Pinson SRM, Oard JH (2006) Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. Mol Plant Pathol 7:405–416

    CAS  PubMed  Google Scholar 

  • Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR III (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    CAS  PubMed  Google Scholar 

  • Lippmann R, Kaspar S, Rutten T, Melzer M, Kumlehn MA, Mock HP (2009) Protein and metabolite analysis reveals permanent induction of stress defense and cell regeneration processes in a tobacco cell suspension culture. Int J Mol Sci 10:3012–3032

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Mühling KH (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465

    CAS  PubMed  Google Scholar 

  • Lum G, Min XJ (2011) Plant secretomics: current status and future perspectives. Plant Omics J 4(2):114–119

    Google Scholar 

  • Lutcke H (1995) Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur J Biochem 228:531–550

    CAS  PubMed  Google Scholar 

  • Marentes E, Griffith M, Mlynarz A, Brush RA (1993) Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiol Plant 87:499–507

    CAS  Google Scholar 

  • Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    CAS  PubMed  Google Scholar 

  • Marti L, Fornaciari S, Renna L, Stefano G, Brandizzi F (2010) COPII-mediated traffic in plants. Trends Plant Sci 15:522–528

    CAS  PubMed  Google Scholar 

  • Martinez-Esteso MJ, Selles-Marchart S, Vera-Urbina JC, Pedreno MA, Bru-Martinez R (2009) Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors. J Proteomics 73:331–341

    CAS  PubMed  Google Scholar 

  • Masuda S, Kamada H, Satoh S (2001) Chitinase in cucumber xylem sap. Biosci Biotechnol Biochem 65:1883–1885

    CAS  PubMed  Google Scholar 

  • Mello EO, Ribeiro SF, Carvalho AO, Santos IS, Da Cunha D, Santa-Catarina C, Gomes VM (2011) Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr Microbiol 62:1209–1211

    CAS  PubMed  Google Scholar 

  • Meyer D, Paionk S, Micali C, O’Connell R, Schulze-Lefert P (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57:986–999

    CAS  PubMed  Google Scholar 

  • Miao Y, Li KY, Yao X, Jiang L (2008) The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. Plant J 56:824–839

    CAS  PubMed  Google Scholar 

  • Miller JD, Wilhelm H, Gierasch L, Gilmore R, Walter P (1993) GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366:351–354

    CAS  PubMed  Google Scholar 

  • Ndimba BK, Chivasa S, Hamilton JM, Simon WJ, Slabas AR (2003) Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3:1047–1059

    CAS  PubMed  Google Scholar 

  • Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:148–155

    CAS  PubMed  Google Scholar 

  • Nickel W, Briigger B, Wieland FT (2002) Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 115:3235–3240

    CAS  PubMed  Google Scholar 

  • Niemes S, Langhans M, Viotti C, Scheuring D, Yan MSY, Jiang L, Hilmer S, Robinson DG, Pimpl P (2010) Retromer recycles vacuolar sorting receptors from the trans-Golgi network. Plant J 61:107–121

    CAS  PubMed  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okushima Y, Koizumi N, Kusano T, Sano H (2000) Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol Biol 42:479–488

    CAS  PubMed  Google Scholar 

  • Otegui MS, Spitzer C (2008) Endosomal functions in plants. Traffic 9:1589–1598

    CAS  PubMed  Google Scholar 

  • Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA (1995) Post-translational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561–570

    CAS  PubMed  Google Scholar 

  • Pecenkova T, Hála M, Kulich I, Kocourková D, Drdová E, Fendrych M, Toupalová H, Žárskýý V (2011) The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant–pathogen interaction. J Exp Bot 62:2107–2116

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pechanova O, Hsu CY, Adams JP, Pechan T, Vandervelde L, Drnevich J, Jawdy S, Adeli A, Suttle JC, Lawrence AM, Tschaplinski TJ, Séguin A, Yuceer C (2010) Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genomics 11:674. doi:10.1186/1471-2164-11-674

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pennell R (1998) Cell walls: structures and signals. Curr Opin Plant Biol 1:504–510

    CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    CAS  PubMed  Google Scholar 

  • Rampitsch C, Bykova NV, McCallum B, Beimcik E, Ens W (2006) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics 6:1897–1907

    CAS  PubMed  Google Scholar 

  • Ranki H, Sopanen T (1984) Secretion of α-amylase by the aleurone layer and the scutellum of germinating barley grain. Plant Physiol 75:710–715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rapoport TA, Matlack KE, Plath K, Misselwitz B, Staeck O (1999) Post-translational protein translocation across the membrane of the endoplasmic reticulum. Biol Chem 380:1143–1150

    CAS  PubMed  Google Scholar 

  • Rep M, Dekker HL, Vossen JH, de Boer AD, Houterman PM, de Koster CG, Cornelissen BJC (2003) A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins. FEBS Lett 534:82–86

    CAS  PubMed  Google Scholar 

  • Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Thiec DL, Fluch S, Martin F, Duplessis S (2007) Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol 144:347–366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson DG, Langhans M, Saint-Jore-Dupas C, Hawes C (2008) BFA effects are tissue and not just plant specific. Trends Plant Sci 13:405–408

    CAS  PubMed  Google Scholar 

  • Robinson DG, Pimpl P, Scheuring D, Stierhof YD, Sturm S, Viotti C (2012) Trying to make sense of retromer. Trends Plant Sci 17:431–439

    CAS  PubMed  Google Scholar 

  • Sakurai N (1998) Dynamic function and regulation of apoplast in the plant body. J Plant Res 111:133–148

    CAS  Google Scholar 

  • Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR (2009) Cellular pathways regulating responses to compatible and self-Incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell 21:2655–2671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scheuring D, Viotti C, Krüger F, Künzl F, Sturm S, Bubeck J, Hillmer S, Frigerio L, Robinson DG, Pimpl P, Schumacher K (2011) Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23:3463–3481

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song Y, Zhang C, Ge W, Zhang Y, Burlingame AL, Guo Y (2011) Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. J Proteomics 74(7):1045–1067

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol 135:2055–2067

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stassen JH, Seidl MF, Vergeer PW, Nijman IJ, Snel B, Cuppen E, Van den Ackervenken G (2012) Effector identification in the lettuce downy mildew Bremia lactucae by massively parallel transcriptome sequencing. Mol Plant Pathol 13(7):719–731

    CAS  PubMed  Google Scholar 

  • Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Google Scholar 

  • Sztul E, Lupashin V (2009) Role of vesicle tethering factors in the ER–Golgi membrane traffic. FEBS Lett 583:3770–3783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terry M, Bonner B (1980) An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of indoleacetic acid-induced growth. Plant Physiol 66:321–325

    PubMed Central  CAS  PubMed  Google Scholar 

  • The UniProt Consortium (2010) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148. doi:10.1093/nar/gkp846

    PubMed Central  Google Scholar 

  • Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PW, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BP (2012) The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 84:166–180

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216:193–202

    CAS  PubMed  Google Scholar 

  • Tian L, Zhang L, Zhang J, Song Y, Guo Y (2009) Differential proteomic analysis of soluble extracellular proteins reveals the cysteine protease and cystatin involved in suspension-cultured cell proliferation in rice. Biochim Biophys Acta 1794:459–467

    CAS  PubMed  Google Scholar 

  • Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tran HT, Plaxton WC (2008) Proteomic analysis of alterations in the secretome of Arabidopsis thaliana suspension cells subjected to nutritional phosphate deficiency. Proteomics 8:4317–4326. doi:10.1002/pmic.200800292

    CAS  PubMed  Google Scholar 

  • Tse YC, Mo B, Hilmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 Cells. Plant Cell 16:672–693

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:427–447

    Google Scholar 

  • Ventelon-Debout M, Delalande F, Brizard JP, Diemer H, Van Dorselaer A, Brugiduo C (2004) Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics 4:216–225

    CAS  PubMed  Google Scholar 

  • Verburg JG, Huynh QK (1991) Purification and characterization of an antifungal chitinase from Arabidopsis thaliana. Plant Physiol 95:450–455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walter P, Johnson AE (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10:87–119

    CAS  PubMed  Google Scholar 

  • Wang J, Cai Y, Miao Y, Lam SK, Jiang L (2009) Wortmannin induces homotypic fusion of plant prevacuolar compartments. J Exp Bot 60:3075–3083

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, Wang X, Robinson DG, Jiang L (2010a) EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22:4009–4030

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Tse YC, Law AHY, Sun SSM, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L (2010b) Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J 61:826–838

    CAS  PubMed  Google Scholar 

  • Xu H, Mendgen K (1994) Endocytosis of 1,3-β-glucans by broad bean cells at the penetration site of the cowpea rust fungus (haploid stage). Planta 195:282–290

    CAS  Google Scholar 

  • Yaish MWF, Doxey AC, McConkey BJ, Moffatt BA, Griffith M (2006) Cold-active winter rye glucanases with ice-binding capacity. Plant Physiol 141:1459–1472

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye Y, Mar E-C, Tong S, Sammons S, Fang S, Anderson JL, Wang D (2010) Application of proteomics methods for pathogen discovery. J Virol Methods 163:87–95. doi:10.1016/j.jviromet.2009.09.002

    CAS  PubMed  Google Scholar 

  • Yeom SI, Baek HK, Oh SK, Kang WH, Lee SJ, Lee JM, Seo E, Rose JK, Kim BD, Choi D (2011) Use of a secretion trap screen in pepper following Phytophthora capsici infection reveals novel functions of secreted plant proteins in modulating cell death. Mol Plant Microbe Interact 24:671–684

    CAS  PubMed  Google Scholar 

  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149:916–928

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu CM, Emons AMC, Ketelaar T (2010) The plant exocyst. J Integr Plant Biol 52:138–146

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Javed Ahmed, Assistant Professor, King Saud University, and Dr. Abhishek Ojha, Postdoctoral Fellow, International Centre for Genetic Engineering and Biotechnology, New Delhi, for providing us the literatures for consultation and their timely and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Yadav Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Yadav, N., Khurana, S.M.P., Yadav, D.K. (2015). Plant Secretomics: Unique Initiatives. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_12

Download citation

Publish with us

Policies and ethics