Skip to main content

Plant Lipidomics: Signalling and Analytical Strategies

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

The plant lipidomics is a comprehensive system of all lipids in plants with respect to cell signalling, membrane architecture, transcriptional and translational modulation and cell-cell and cell-protein interactions in response to environmental changes over time. This chapter is mainly focused on the role of plant lipids in signalling pathways during stress conditions, which were described in detail. In order to ameliorate lipid research, various analytical methods developed to characterise and quantify lipids are discussed with the salient points. Various lipid databases are provided which will be useful to access a wide range of information about lipids. Few online resources for the lipids are also described. This can help further research in the field of plant lipidomics. In conclusion, the role of plant lipids over human health and some of biological roles were illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ATNHX1:

Vacuolar Na+/H+ antiporter

ATP:

Adenosine triphosphate

ALA:

Alpha-linolenic acid

Ca2+ :

Calcium ion

CAT1 :

Catalase1 gene

cAMP:

Cyclic AMP

CDP-DAG:

Cytidine diphosphate diacylglycerol

CID:

Collision-induced dissociation

CLA:

Conjugated linoleic acid

CMP:

Cytidine monophosphate

CoA:

Coenzyme A

DAG:

Diacylglycerol

dc:

Direct current

DGDG:

Digalactosyldiacylglycerol

DPG:

Diphosphatidylglycerol

DGPP:

Diacylglycerol pyrophosphate

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

ER:

Endoplasmic reticulum

ESI:

Electrospray ionisation

FT-ICR:

Fourier transform ion cyclotron resonance

FTMS:

Fourier transform mass spectrometer

GDP:

Guanosine diphosphate

GTP:

Guanosine triphosphate

H2O2 :

Hydrogen peroxide

HPLC:

High-pressure liquid chromatography

ILCNC:

International Lipid Classification and Nomenclature Committee

[Ins(1,4,5)P3]:

Inositol (1,4,5) trisphosphate

IP3R:

Inositol triphosphate receptors

IR:

Infrared lasers

LA:

Linoleic acid

LC:

Liquid chromatography

LIMSA:

Lipid mass spectrum analysis

LIT:

Linear ion trap

LTPs:

Lipid transfer proteins

LTQ:

Linear trap quadrupole

LPC:

Lysophosphatidylcholine

MALDI:

Matrix-assisted laser desorption/ionisation

MAPK:

Mitogen-activated protein kinase

MGDG:

Monogalactosyldiacylglycerol

MPIS:

Multiple precursor ion scanning

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

NP:

Normal phase

OCN:

Oscillating capillary nebuliser

PA:

Phosphatidic acid

PAK:

Phosphatidic acid kinase

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PI3K:

Phosphoinositide 3-kinase

[PI-PLC]:

Phosphoinositide-specific phospholipase C

PIP2 :

Phosphatidylinositol-4,5-bipho-sphate

PKC:

Phosphokinase C

PK-C:

Protein kinase C

PLA2 :

Phospholipase A2

PLC:

Phospholipase C

PLC-DAG:

Phospholipase C-Diacylglycerol kinase

PLD:

Phospholipase D

[PtdIns(4,5)P2]:

Phosphatidylinositol 4,5-bis-phosphate

PtdOH:

Substrate phosphatidic acid

PUFAs:

Polyunsaturated fatty acids

rf:

Radio frequency

ROS:

Reactive oxygen species

RP:

Reverse phase

SA:

Sialic acid

SAR:

Systemic acquired resistance

SECD:

Spectrum extraction from chromatographic data

SIMS:

Secondary ion mass spectrometry

SMILES:

Simplified Molecular Line Entry Specification

THAP:

2,4,6-Trihydroxyacetophenone

TLC:

Thin-layer chromatography

TOF:

Time of flight

TP:

Tonoplast

TAG:

Triacylglycerol

TVP1:

Vacuolar-type proton translocating pyrophosphate1

UV:

Ultraviolet

References

  • Adosraku RK, Choi GT, Constantinou-Kokotos V et al (1994) NMR lipid profiles of cells, tissues, and body fluids: proton NMR analysis of human erythrocyte lipids. J Lipid Res 35:1925–1931

    CAS  PubMed  Google Scholar 

  • Ahmad P, Prasad MNV (2004) Abiotic stress responses in plants. J Plant Physiol 168:807–815

    Google Scholar 

  • Akınc Åž, Losel DM (2012) Water stress. In: Ismail M, Mofizur R (eds) Plant water-stress response mechanisms. InTech, Croatia, UK. ISBN 978-953-307-963-9

    Google Scholar 

  • American Dietetic Association (1997) Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc 97:1317–1321

    Google Scholar 

  • Arisz SA et al (2003) Substrate preference of stress-activated phospholipase D in Chlamydomonas and its contribution to PA formation. Plant J 34:595–604

    CAS  PubMed  Google Scholar 

  • Bar-Peled M, Bassham DC, Raikhel NV (1996) Transport of proteins in eukaryotic cells: more questions ahead. Plant Mol Biol 32:223–249

    CAS  PubMed  Google Scholar 

  • Bavaro L, Catucci L, Depalo N et al (2007) Lipid content in higher plants under osmotic stress. Bioelectrochemistry 70:12–17

    CAS  PubMed  Google Scholar 

  • Beffa R, Szell M, Meuwly P et al (1995) Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J 14:5753–5761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signaling. Nature 341:197–205

    CAS  PubMed  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189–214

    CAS  Google Scholar 

  • Brugger B, Erben G, Sandhoff R et al (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94:2339–2344

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brull F, Mensink RP, Plat J (2009) Plant sterols: functional lipids in immune function and inflammation. J Lipid Res 4(3):355–365

    Google Scholar 

  • Byrdwell WC (2001) Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 36(4):327–346

    CAS  PubMed  Google Scholar 

  • Carrasco-Pancorbo A, Navas-Iglesias N, Cuadros-Rodriguez L (2009) From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: Modern lipid analysis. Trends Anal Chem 38

    Google Scholar 

  • Chandra S, Heinstein PF, Low PS (1996) Activation of phospholipase a by plant defense elicitors. Plant Physiol 110:979–986

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Allegood J, Liu Y et al (2008) Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem 80:2780–2788

    CAS  PubMed  Google Scholar 

  • Chen D, Yan X, Xu J et al (2013) Lipidomic profiling and discovery of lipid biomarkers in Stephanodiscus sp. under cold stress. Metabolomics. doi:10.1007/s11306-013-0515-z

    Google Scholar 

  • Cho MH, Tan Z, Erneux C et al (1995) The effects of mastoparan on the carrot cell plasma membrane polyphosphoinositide phospholipase C. Plant Physiol 107:845–856

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke SD, Jump DB (1994) Dietary polyunsaturated fatty acid regulation of gene transcription. Annu Rev Nutr 14:83–98

    CAS  PubMed  Google Scholar 

  • Dass C (2007) Fundamentals of contemporary mass spectrometry. Wiley, Hoboken

    Google Scholar 

  • de Torres Zabela M et al (2002) Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol Plant-Microbe Interact 15:808–816

    PubMed  Google Scholar 

  • DeLong CJ, Shen YJ, Thomas MJ et al (1999) Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidyl ethanolamine methylation pathway. J Biol Chem 274:29683–29688

    CAS  PubMed  Google Scholar 

  • Den Hartog M et al (2001) Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J 25:55–66

    Google Scholar 

  • Dorne AJ, Joyard J, Douce R (1990) Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci U S A 87:71–74

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dowhan W (2009) Molecular genetic approaches to defining lipid function. J Lipid Res 50:305–310

    Google Scholar 

  • Ekroos K, Chernushevich IV, Simons K et al (2002) Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal Chem 74:941–949

    CAS  PubMed  Google Scholar 

  • Fahy E, Subramaniam S, Brown HA et al (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    CAS  PubMed  Google Scholar 

  • Fahy E, Sud M, Cotter D et al (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35:606–612

    Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:9–14

    Google Scholar 

  • Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    CAS  PubMed  Google Scholar 

  • Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    CAS  PubMed  Google Scholar 

  • Giroud C, Siegenthaler PA (1988) Development of oat prothylakoids into thylakoids during greening does not change transmembrane galactolipid asymmetry but preserves the thylakoid bilayer. Plant Physiol 88:412–417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gong M, Li YJ, Chen SZ (1998) Abscisic acid–induced thermo tolerance in maize seedling is mediated by calcium and associated with antioxidant system. J Plant Physiol 153:488–496

    CAS  Google Scholar 

  • Graber R, Sumida C, Nunez EA (1994) Fatty acids and cell signal transduction. J Lipid Mediat Cell Signal 9:91–116

    CAS  PubMed  Google Scholar 

  • Gross RW, Han X (2006) Unlocking the complexity of lipids: using lipidomics to identify disease mechanisms, biomarkers, and treatment efficacy. Futur Lipidol 1:539

    CAS  Google Scholar 

  • Guan LM, Zhao J, Scadalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87–95

    CAS  PubMed  Google Scholar 

  • Haimi P, Uphoff A, Hermansson M et al (2006) Software tools for analysis of mass spectrometric lipidome data. Anal Chem 78:8324–8331

    CAS  PubMed  Google Scholar 

  • Han X, Gross RW (1994) Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A 91:10635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by electrospray ionization mass spectrometry: a bridge to lipidomics. J Lipid Res 44:1071

    CAS  PubMed  Google Scholar 

  • Han PP, Yuan Y-j (2009) Lipidomic analysis reveals activation of phospholipid signaling in mechanotransduction of Taxus cuspidate cells in response to shear stress. FASEB J 23:623–630

    CAS  PubMed  Google Scholar 

  • Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ (2008) Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197:12–24

    CAS  PubMed  Google Scholar 

  • Hiukka A, Stahlman M, Pettersson C et al (2009) ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes 58:2018–2026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hong Y, Pan X, Welti R et al (2008) Phospholipase Dα3 is involved in the hyper osmotic response in Arabidopsis. Plant Cell 20:803–816

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hopfgartner G, Varesio E, Tschappat V et al (2004) Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom 39:845–855

    CAS  PubMed  Google Scholar 

  • Houjou T, Yamatani K, Imagawa M et al (2005) A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19:654–666

    CAS  PubMed  Google Scholar 

  • Hoyos ME, Zhang S (2000) Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol 122:1355–1363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu C, van der Heijden R, Wang M et al (2009) Analytical strategies in lipidomics and applications in disease biomarker discovery. J Chromatogr 877:2836–2846

    CAS  Google Scholar 

  • Ishida M et al (2004) High resolution analysis by nano electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for the identification of molecular species of phospholipids and their oxidized metabolites. Rapid Commun Mass Spectrom 18(20):2486–2494

    CAS  PubMed  Google Scholar 

  • Israelachvili J (1992) Relationship between chain protrusions and surfactant critical micelle concentration values. Langmuir 8:1501

    CAS  Google Scholar 

  • Ivanova PT, Cerda BA, Horn DM et al (2001) Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2H3 mastocytoma cells during degranulation. Proc Natl Acad Sci U S A 98:7152–7157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Joyard J, Block MA, Douce R (1991) Molecular aspects of plastid envelope biochemistry. Eur J Biochem 199:489–509

    CAS  PubMed  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    CAS  PubMed  Google Scholar 

  • Katagiri T et al (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLDd, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J 26:595–605

    CAS  PubMed  Google Scholar 

  • Kell DB (2006) Metabolomics, modelling and machine learning in systems biology – towards and understanding of the languages of cells. FEBS J 273:873–894

    CAS  PubMed  Google Scholar 

  • Kim HY, Cote CG, Crain RC (1996) Inositol 1,4,5-trisphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta 198:279–287

    CAS  PubMed  Google Scholar 

  • Klose C, Surma MA, Gerl (2012) Flexibility of eukaryotic lipidome insights from yeast lipidomics. PLoS One 7(4):35063

    Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Physiol Plant 113:158–164

    CAS  PubMed  Google Scholar 

  • Kramer PJ (1980) Drought, stress, and the origin of adaptations. In: Turner NC, Kramer PJ (eds) Adaptations of plants to water and high temperature stress. Wiley, New York, pp 7–20

    Google Scholar 

  • Larsen A, Uran S, Jacobsen PB et al (2001) Collision-induced dissociation of glycerophospholipids using electrospray ion-trap mass spectrometry. Rapid Commun Mass Spectrom 15:2393–2398

    CAS  PubMed  Google Scholar 

  • Laxalt AM, Munnik T (2002) Phospholipid signalling in plant defence. Curr Opin Plant Biol 5:1–7

    Google Scholar 

  • Laxalt AM et al (2001) Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDb1 on elicitation with xylanase. Plant J 26:237–247

    CAS  PubMed  Google Scholar 

  • Legendre L, Yueh YG, Crain R et al (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268:4559–24563

    Google Scholar 

  • Lindsey K, Pullen ML, Topping JF (2003) Importance of plant sterols in pattern formation and hormone signalling. Trends Plant Sci 8:521–525

    CAS  PubMed  Google Scholar 

  • Lipid Maps Consortium (2009) Lipid Maps Consortium: lipid metabolites and pathways strategy. www.lipidmaps.org

  • Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:300–309

    CAS  PubMed  Google Scholar 

  • Mazid M, Khan TA, Mohammad (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2):232–249

    CAS  Google Scholar 

  • McDonald JG, Thompson BM, McCrum EC et al (2007) Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry. Methods Enzymol 432:145–170

    CAS  PubMed  Google Scholar 

  • McDonnell LA, Heeren RM (2007) Imaging mass spectrometry. Mass Spectrom Rev 26:606–643

    CAS  PubMed  Google Scholar 

  • Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    CAS  PubMed  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    CAS  PubMed  Google Scholar 

  • Millner PA (1995) The auxin signal. Curr Opin Cell Biol 7:224–231

    CAS  PubMed  Google Scholar 

  • Millner PA, Causier BE (1996) G-protein coupled receptors in plant cells. J Exp Bot 47:983–992

    CAS  Google Scholar 

  • Moreau P, Bessoule JJ, Mongrand S, Testet T et al (1998) Lipid trafficking in plant cells. Prog Lipid Res 37(6):371–391

    CAS  PubMed  Google Scholar 

  • Munnik T (1999) Phospholipid metabolism with respect to signal transduction in plant cells. PhD thesis, University of Amsterdam, The Netherlands

    Google Scholar 

  • Munnik T, de Vrije T, Irvine RF et al (1996) Identification of diacylglycerol pyrophosphate as a novel metabolic product of phosphatidic acid during G-protein activation in plants. J Biol Chem 271:15708–15715

    CAS  PubMed  Google Scholar 

  • Munnik T, van Himbergen JAJ, Ter Riet T et al (1997) Phospholipid metabolism with respect to signal transduction in plant cells. PhD thesis, University of Amsterdam, The Netherlands

    Google Scholar 

  • Nakamura Y (2013) Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 52:43–50

    CAS  PubMed  Google Scholar 

  • Nobes CD, Hawkins P, Stephens L, Hall A (1995) Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J Cell Sci 108:225–233

    CAS  PubMed  Google Scholar 

  • Nygren H, Malmberg P, Kriegeskotte C et al (2004) Bio imaging TOF-SIMS: localization of cholesterol in rat kidney sections. FEBS Lett 566:291–293

    CAS  PubMed  Google Scholar 

  • Ohlrogge JB, Pollard MR, Stumpf PK (1978) Studies on biosynthesis of waxes by developing jojoba seed tissue. Lipids 13:203–210

    CAS  Google Scholar 

  • Ohlrogge JB, Browse J, Chris R et al (1991) The genetics of plant lipids. Biochim Biophys Acta 1082:1–26

    CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S et al (2000) Calcium channels activated by hydrogen peroxide mediates abscisic acid signalling in guard cells. Nature 406:731–734

    CAS  PubMed  Google Scholar 

  • Poltronieri P, Bonsegna S, Domenico SD et al (2011) Molecular mechanisms in plant abiotic stress response. Ratar Povrt Field Veg Crop Res 48:15–24

    Google Scholar 

  • Prasad TK, Anderson MD, Martin BA et al (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rawyler A, Unitt MD, Giroud C et al (1987) The transmembrane distribution of galactolipids in chloroplast thylakoids is universal in a wide variety of temperate climate plants. Photosynth Res 11:3–13

    CAS  PubMed  Google Scholar 

  • Reina-Pinto JJ, Yephremov A (2009) Surface lipids and plant defences. Plant Physiol Biochem 47:540–549

    CAS  PubMed  Google Scholar 

  • Roberts LJ (2002) Lipids as regulators of cell function. Cell Mol Life Sci 59:727–728

    CAS  Google Scholar 

  • Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272(5259):227–234

    CAS  PubMed  Google Scholar 

  • Sangwan V, Foulds I, Singh J et al (2001) Cold activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2 influx. Plant J 27:1–12

    CAS  PubMed  Google Scholar 

  • Scherer GFE (1995) Activation of phospholipase A2 by auxin and matsporan in hypocotyl segment from zucchini and sunflower. J Plant Physiol 145:483–490

    CAS  Google Scholar 

  • Scherer GF (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Mol Biol 49:357–372

    CAS  PubMed  Google Scholar 

  • Schwartz JC, Senko MW, Syka JE (2002) A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 13:659–669

    CAS  PubMed  Google Scholar 

  • Schwudke D, Hannich JT, Surendranath V et al (2007) Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra. Anal Chem 79:4083–4093

    CAS  PubMed  Google Scholar 

  • Segura A, Moreno M, Garcia-Olmedo F (1993) Purification and anti pathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett 332:243–246

    CAS  PubMed  Google Scholar 

  • Siegenthaler PA, Giroud C (1986) Transversal distribution of phospholipids in prothylakoid and thylakoid membranes from oat. FEBS Lett 201:215–220

    CAS  Google Scholar 

  • Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560S–569S

    CAS  PubMed  Google Scholar 

  • Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 632:1–15

    Google Scholar 

  • Stubiger G, Belgacem O (2007) Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal Chem 79:3206–3213

    PubMed  Google Scholar 

  • Van der Luit AH et al (2000) Elicitation of suspension-cultured tomato cells triggers formation of phosphatidic acid and diacylgycerol pyrophosphate. Plant Physiol 123:1507–15154

    PubMed Central  PubMed  Google Scholar 

  • Van Meer G (2005) Cellular lipidomics. EMBO J 24:3159–3165

    PubMed Central  PubMed  Google Scholar 

  • Voelker TA, Kinney AJ (2001) Variations in the biosynthesis of seed storage lipids. Annu Rev Plant Physiol Plant Mol Biol 52:261–335

    Google Scholar 

  • Wang X (2000) Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res 39:109–149

    CAS  PubMed  Google Scholar 

  • Wang QY, Nick P (2001) Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol 42:999–1005

    CAS  PubMed  Google Scholar 

  • Wang ZY, Kenigsbuch D, Sun L et al (1997) A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9:491–507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watson AD (2006) Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101

    CAS  PubMed  Google Scholar 

  • Welti R, Wang X (2004) Lipid species profiling: High-throughput approaches to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr Opin Plant Biol 7:337–344

    CAS  PubMed  Google Scholar 

  • Welti R, Shah J, Li W et al (2007) Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci 12:2494–2506

    CAS  PubMed  Google Scholar 

  • Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610

    CAS  PubMed  Google Scholar 

  • Wenk MR, Lucast L, Di Paolo G et al (2003) Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol 21:813–817

    CAS  PubMed  Google Scholar 

  • Wiest MM, Watkins SM (2007) Biomarker discovery using high-dimensional lipid analysis. Curr Opin Lipidol 18:181

    CAS  PubMed  Google Scholar 

  • Woods AS, Jackson SN (2006) Brain tissue lipidomics: direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS J 8:391–395

    Google Scholar 

  • Xu C, Fan J, Cornish AJ, Benning C (2008) Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein[W]. Plant Cell 20:2190–2204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zacarias A, Bolanowski D, Bhatnagar A (2002) Comparative measurements of multicomponent phospholipid mixtures by electrospray mass spectroscopy: relating ion intensity to concentration. Anal Biochem 308:152–159

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhang L, Dong F et al (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Aust J Plant Physiol 28:1055–1061

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elangovan Namasivayam Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Namasivayam, E. et al. (2015). Plant Lipidomics: Signalling and Analytical Strategies. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_11

Download citation

Publish with us

Policies and ethics