Skip to main content

Plant Glycomics: Advances and Applications

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Glycomics, the study of entire complement of sugars in an organism, helps to analyze the interaction of sugar with other macromolecules like carbohydrates, proteins, and nucleic acid. Greater structural complexity, nonlinear relationship of glycans with genome, and difficulty in isolation, characterization, and synthesis of complex oligosaccharides pose a significant challenge to glycomics. The isolation of plant glycoconjugates from natural sources is a complex process due to the lack of high-throughput user-friendly tools. Recent chemical advances have opened new and exciting possibilities in obtaining pure and chemically defined glycan moieties. Chromatographic techniques, tandem mass spectrometry, MALDI-mass spectrometry, ESI-mass spectrometry, NMR spectroscopy, and carbohydrate/lectin microarray are important tools for glycomics. Glycogene microarrays are useful to identify differentially expressed glycosylation-related genes and to study glycan biosynthesis, structure, and function. Efficient glycoinformatics have considerably enhanced the glycomic research by improving the data quality and reducing experimental costs. Glycans including lectins provide both structural and functional diversity to plants and are useful in transgenic technologies to increase resistance to pathogens and pests. Plant glycomics find their applications in biopharming and biopharmaceutics and provides a novel area of advanced glycome research to understand structure–function relationships of glycans. Unraveling the mysteries of glycomics would indeed be very beneficial as sugars play key role in many biological processes such as signaling, stress responses, and immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altmann F (1997) More than silk and honey-or, can insect cells serve in the production of therapeutic glycoproteins? Glycoconj J 14:643–646

    CAS  PubMed  Google Scholar 

  • Altmann F, Fabini G, Ahorn H, Wilson IB (2001) Genetic model organisms in the study of Nglycans. Biochimie 83:703–712

    CAS  PubMed  Google Scholar 

  • Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    CAS  PubMed  Google Scholar 

  • Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci U S A 98:2899–2904

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balen B, Krsnik-Rasol M (2007) N-glycosylation of recombinant therapeutic glycoproteins in plant systems. Food Technol Biotechnol 45:1–10

    CAS  Google Scholar 

  • Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364

    CAS  PubMed  Google Scholar 

  • Bielik AM, Zaia J (2010) Historical overview of glycoanalysis. Methods Mol Biol 600:9–30

    CAS  PubMed  Google Scholar 

  • Bollini R, Ceriotti A, Daminati MG, Vitale A (1985) Glycosylation is not needed for the intracellular transport of phytohemagglutinin in developing Phaseolus vulgaris cotyledons and for the maintenance of its biological activities. Physiol Plant 65:15–22

    CAS  Google Scholar 

  • Buskas T, Ingale S, Boons GJ (2006) Glycopeptides as versatile tools for glycobiology. Glycobiology 16:113R–136R

    CAS  PubMed  Google Scholar 

  • Chadd HE, Chamow SM (2001) Therapeutic antibody expression technology. Curr Opin Biotechnol 12(2):188–194

    CAS  PubMed  Google Scholar 

  • Chargelegue D, Vine ND, van Dolleweerd CJ, Drake PM, Ma JK (2000) A murine monoclonal antibody produced in transgenic plants with plant specific glycans is not immunogenic in mice. Transgenic Res 9:187–194

    CAS  PubMed  Google Scholar 

  • Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, Brand RE, Haab BB (2007) Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 4:437–444

    CAS  PubMed  Google Scholar 

  • Comelli EM, Amado M, Head SR, Paulson JC (2002) Custom microarray for glycobiologists: consideration for glycosyltransferase gene expression profiling. Biochem Soc Symp 69:135–142

    CAS  PubMed  Google Scholar 

  • Cooper CA, Gasteiger E, Packer NH (2001) GlycoMod—a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1:340–349

    CAS  PubMed  Google Scholar 

  • Costa J, Ashford DA, Nimtz M, Bento I, Frazao C, Esteves CL, Faro CJ, Kervinen J, Pires E, Verissimo P, Wlodawer A, Carrondo MA (1997) The glycosylation of the aspartic proteinases from barley (Hordeum vulgare L.) and cardoon (Cynara cardunculus L.). Eur J Biochem 243:695–700

    CAS  PubMed  Google Scholar 

  • Cumar FA, Barra HS, Maccioni HJ, Caputto R (1968) Sulfation of glycosphingolipids and related carbohydrates by brain preparations from young rats. J Biol Chem 243:3807–3816

    CAS  PubMed  Google Scholar 

  • Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol BioSyst 5:1087–1104

    CAS  PubMed  Google Scholar 

  • D’Angelo G et al (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67

    PubMed  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines. Trends Plant Sci 6:219–226

    CAS  PubMed  Google Scholar 

  • Deery MJ, Stimson E, Chappell CG (2001) Size exclusion chromatography/mass spectrometry applied to the analysis of polysaccharides. Rapid Commun Mass Spectrom 15:2273–2283

    CAS  PubMed  Google Scholar 

  • Doran PM (2000) Foreign protein production in tissue cultures. Curr Opin Biotechnol 11:199–204

    CAS  PubMed  Google Scholar 

  • Ding W, Nothaft H, Szymanski CM, Kelly J (2009) Identification and quantification of glycoproteins using ionpairing normal-phase liquid chromatography and mass spectrometry. Mol Cell Proteomics 8:2170–2185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Domann PJ, Pardos-Pardos AC, Fernandes DL, Spencer DI, Radcliffe CM, Royle L, Dwek RA, Rudd PM (2007) Separation-based glycoprofiling approaches using fluorescent labels. Proteomics 7(Suppl 1):70–76

    PubMed  Google Scholar 

  • Dörmann P, Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7:112–118

    PubMed  Google Scholar 

  • Elbers IJW, Stoopen GM, Bakker H, Stevens LH, Bardor M, Molthoff JW, Jordi JRM, Bosch D, Lommen A (2001) Influence of growth conditions and developmental stage on N-Glycan heterogeneity of transgenic immunoglobulin G and endogenous proteins in tobacco leaves. Plant Physiol 126(3):1314–1322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770–1778

    CAS  PubMed  Google Scholar 

  • Feizi T, Chai W (2004) Oligosaccharide microarrays to decipher the glyco code. Nat Rev Mol Cell Biol 5:582–588

    CAS  PubMed  Google Scholar 

  • Fiedler U, Conrad U (1995) High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Biotechnology 13:1090–1093

    CAS  PubMed  Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299

    CAS  PubMed  Google Scholar 

  • Fitchette-Lainé AC, Gomord V, Cabanes M, Michalski JC, Saint-Macary M, Foucher B, Cavelier B, Hawes C, Lerouge P, Faye L (1997) N-glycans harboring the lewis a epitope are expressed at the surface of plant cells. Plant J 12:1411–1417

    PubMed  Google Scholar 

  • Fotisch K, Vieths S (2001) N- and O-linked oligosaccharides of allergenic glycoproteins. Glycoconj J 18:373–390

    CAS  PubMed  Google Scholar 

  • Frasch W, Grunwald C (1976) Acylatedsteryl glycoside synthesis in seedlings of Nicotianatabacum L. Plant Physiol 58:744–748

    PubMed Central  CAS  PubMed  Google Scholar 

  • Froesch M, Bindila L, Baykut G, Allen M, Peter-Katalinić J, Zamfi AD (2004) Coupling of fully automated chip electrospray to fourier transform ion cyclotron mass spectrometry for high-performance glycoscreening and sequencing. Rapid Commun Mass Spectrom 18:3084–3092

    CAS  PubMed  Google Scholar 

  • Fukui S, Feizi T, Galustian C, Lawson AM, Chai W (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 20:1011–1017

    CAS  PubMed  Google Scholar 

  • Gabius HJ, Siebert HC, Andre S, Jimenez-Barbero J, Rudiger H (2004) Chemical biology of the sugar code. Chembiochem 5:740–764

    CAS  PubMed  Google Scholar 

  • Garcia-Casado G, Sanchez-Monge R, Chrispeels MJ, Armentia A, Salcedo G, Gomez L (1996) Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology 6:471–477

    CAS  PubMed  Google Scholar 

  • Ghesquiere B, Van Damme J, Martens L, Vandekerckhove J, Gevaert K (2006) Proteome-wide characterization of Nglycosylation events by diagonal chromatography. J Proteome Res 5:2438–2447

    CAS  PubMed  Google Scholar 

  • Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155

    CAS  PubMed  Google Scholar 

  • Goldberg D, Sutton-Smith M, Paulson J, Dell A (2005) Automatic annotation of matrix-assisted laser desorption/ ionization N-glycan spectra. Proteomics 5:865–875

    CAS  PubMed  Google Scholar 

  • Goldstein IJ, Hughes RC, Monsigny M, Osawa T, Sharon N (1980) What should be called a lectin? Nature 285:66

    Google Scholar 

  • Gomord V, Faye L (2004) Post translational modifications of therapeutic proteins in plants. Curr Opin Plant Biol 7(2):171–181

    CAS  PubMed  Google Scholar 

  • Gray JSS, Yang BY, Hull SR, Venzke DP, Montgomery R (1996) The glycans of soybean peroxidase. Glycobiology 6:3–32

    Google Scholar 

  • Grunwald C (1978) Steryl glycoside biosynthesis. Lipids 13:697–703

    CAS  PubMed  Google Scholar 

  • Guerrini M, Bisio A, Torri G (2001) Combined quantitative 1H and 13C nuclear magnetic resonance spectroscopy for characterization of heparin preparations. Semin Thromb Hemost 27:473–482

    CAS  PubMed  Google Scholar 

  • Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA (1996) A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem 240:210–226

    CAS  PubMed  Google Scholar 

  • Hakanssan K, Cooper HJ, Emmett MR, Costello CE, Marshall AG, Nilsson CL (2001) Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. Anal Chem 73:4530–4536

    Google Scholar 

  • Halter D et al (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179:101–115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A 91:913–917

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanada K, Kumagai K, Tomishige N, Yamaji T (2009) CERT-mediated trafficking of ceramide. Biochim Biophys Acta 1791:684–691

    CAS  PubMed  Google Scholar 

  • Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143:672–676

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    CAS  PubMed  Google Scholar 

  • Hashimoto K, Goto S, Kawano S, Aoki-Kinoshita KF, Ueda N, Hamajima M, Kawasaki T, Kanehisa M (2006) M KEGG: a glycome informatics resource. Glycobiology 16:63R–70R

    CAS  PubMed  Google Scholar 

  • Horvath PJ, Eagen CK, Fisher NM, Leddy JJ, Pendergast DR (2000) The effects of varying dietary fat on performance and metabolism in trained male and female runners. J Am Coll Nutr 19(1):52–60

    CAS  PubMed  Google Scholar 

  • Hood EE, Jilka JM (1999) Plant-based production of xenogenic proteins. Curr Opin Biotechnol 10:382–386

    CAS  PubMed  Google Scholar 

  • Horlacher T, Seeberger PH (2008) Carbohydrate arrays as tools for research and diagnostics. Chem Soc Rev 37:1414–1422

    CAS  PubMed  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    CAS  PubMed  Google Scholar 

  • Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet-laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68

    CAS  Google Scholar 

  • Kishimoto T, Watanabe M, Mitsui T, Mori H (1999) Glutelin basic subunits have a mammalian mucin type O-linked disaccharide side chain. Arch Biochem Biophys 370:271–277

    CAS  PubMed  Google Scholar 

  • Knezevic A, Polasek O, Gornik O, Rudan I, Campbell H, Hayward C, Wright A, Kolcic I, O’Donoghue N, Bones J, Rudd PM, Lauc G (2009) Variability, heritability and environmental determinants of human plasma N-glycome. J Proteome Res 8:694–701

    CAS  PubMed  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    CAS  PubMed  Google Scholar 

  • Krambeck FJ, Bennun SV, Narang S, Choi S, Yarema KJ, Betenbaugh MJ (2009) A mathematical model to derive N-glycan structures and cellular enzyme activities from mass spectrometric data. Glycobiology 19:1163–1175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larrick JW, Thomas DW (2001) Producing proteins in transgenic plants and animals. Curr Opin Biotechnol 12:411–418

    CAS  PubMed  Google Scholar 

  • Larrick JW, Yu L, Naftzger C, Jaiswal S, Wycoff K (2001) Production of secretory IgA antibodies in plants. Biomol Eng 18:87–94

    CAS  PubMed  Google Scholar 

  • Leiter H, Mucha J, Staudacher E, Grimm R, Glossl J, Altmann F (1999) Purification, cDNA cloning and expression of GDP-L-Fuc: Asn linked GlcNAcα1,3-fucosyltransferase from mung beans. J Biol Chem 274:830–839

    Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé AC, Gomord V, Faye L (1998) N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    CAS  PubMed  Google Scholar 

  • Liang PH, Wu CY, Greenberg WA, Wong CH (2008) Glycan arrays: biological and medical applications. Curr Opin Chem Biol 12:86–92

    CAS  PubMed  Google Scholar 

  • Lis H, Sharon N (1978) Soybean agglutinin: a plant glycoprotein. J Biol Chem 253:3468–3476

    CAS  PubMed  Google Scholar 

  • Lis H, Sharon N (1993) Protein glycosylation: structural and functional aspects. Eur J Biochem 218(1):1–27

    CAS  PubMed  Google Scholar 

  • Liu Y, Feizi T (2008) Microarrays– key technologies and tools for glycobiology. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience – chemistry and chemical biology, 2nd edn. Springer, Berlin/Heidelberg/New York, pp 2121–2132

    Google Scholar 

  • Lopez M, Coddeville B, Langridge J, Plancke Y, Sautiere P, Chaabihi H, Chirat F, Harduin-Lepers A, Cerutti M, Ver-bert A, Delannoy P (1997) Microheterogeneity of oligosaccharides carried by the recombinant bovine lactoferrin expressed in Mamestra brassicae cells. Glycobiology 7:635–651

    CAS  PubMed  Google Scholar 

  • Lütteke T, Bohne-Lang A, Loss A, Goetz T, Frank M, von der Lieth CW (2006) GLYCOSCIENCES.de: an internet portal to support glycomics and glycobiology research. Glycobiology 16:71R–81R

    PubMed  Google Scholar 

  • Maccioni HJ (2007) Glycosylation of glycolipids in the Golgi complex. J Neurochem 103(Suppl. 1):81–90

    Google Scholar 

  • Maccioni HJ, Quiroga R, Spessott W (2011) Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett 585:1691–1698

    CAS  PubMed  Google Scholar 

  • Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manzi AE, Norgard-Sumnicht K, Argade S, Marth JD, van Halbeek H, Varki A (2000) Exploring the glycan repertoire of genetically modified mice by isolating and profiling of the major glycan classes and nano-NMR analysis of glycan mixtures. Glycobiology 10:669–689

    CAS  PubMed  Google Scholar 

  • McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK, Tuse D, Levy S, Levy R (1999) Rapid production of specific vaccines for lymphoma by expression of the tumor derived single chain Fv epitopes in tobacco plants. Proc Natl Acad Sci U S A 96:703–708

    PubMed Central  CAS  PubMed  Google Scholar 

  • McDonald CA, Yang JY, Marathe V, Yen TY, Macher BA (2009) Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics 8:287–301

    PubMed Central  CAS  PubMed  Google Scholar 

  • McFarland MA, Marshall AG, Hendrickson CL, Nilsson CL, Fredman P, Mansson JE (2005) Structural characterization of GM1 ganglioside by infrared multiphoton dissociation: electron capture dissociation and electron detachment dissociation electrospray ionization FT-ICR-MS/MS. J Am Soc Mass Spectrom 16:752–762

    CAS  PubMed  Google Scholar 

  • Melnykova NM, Mykhalkiv LM, Mamenko PM, Kots YS (2013) The areas of application for plant lectins. Biopolym Cell 29(5):357–366

    CAS  Google Scholar 

  • Melo NS, Nimtz M, Conradt HS, Fevereiro PS, Costa J (1997) Identification of the human Lewisa carbohydrate motif in a secretory peroxidase from a plant cell suspension culture (Vaccinium myrtillus L.). FEBS Lett 415:186–191

    CAS  PubMed  Google Scholar 

  • Meng CK, Mann M, Fenn JB (1988) Of protons or proteins. Z Phys D 10:361–368

    CAS  Google Scholar 

  • Misaki R, Kimura Y, Palacpac NQ, Yoshida S, Fujiyama K, Seki T (2003) Plant cultured cells expressing human beta1,4-galactosyltransferase secrete glycoproteins with galactose-extended N-linked glycans. Glycobiology 13:199–205

    CAS  PubMed  Google Scholar 

  • Mitsui T, Kimura S, Igaue L (1990) Isolation and characterization of Golgi membranes from suspension-cultured cells of rice. Plant Cell Physiol 31:15–25

    CAS  Google Scholar 

  • Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J, Pettolino F, Roberts A, Mikkelsen JD, Knox JP, Bacic A, Willats WGT (2007) High-throughput mapping of cell-wall polymer within and between plants using novel microarrays. Plant J 50:1118–1128

    CAS  PubMed  Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878

    CAS  PubMed  Google Scholar 

  • Navazio L, Baldan B, Mariani P, Gerwig GJ, Vliegenthart JFG (1996) Primary structure of the N-linked carbohydrate chains of calreticulin from spinach leaves. Glycoconj J 13:977–983

    CAS  PubMed  Google Scholar 

  • North SJ, Hitchen PG, Haslam SM, Dell A (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 19:498–506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohsuga H, Su SN, Takahashi N, Yang SY, Nakagawa H, Shimada I, Arata Y, Lee YC (1996) The carbohydrate moiety of the Bermuda grass antigen BG60. J Biol Chem 271:26653–26658

    CAS  PubMed  Google Scholar 

  • Oxley D, Munro SLA, Craik DJ, Bacic A (1996) Structure of N glycans on the S3- and S6- allele stylar self-incompatibility ribonucleases of Nicotiana alata. Glycobiology 6:611–618

    CAS  PubMed  Google Scholar 

  • Pabst M, Bondili JS, Stadlmann J, Mach L, Altmann F (2007) Massþretention time¼structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal Chem 79:5051–5057

    CAS  PubMed  Google Scholar 

  • Pagny S, Cabanes-Macheteau M, Gillikin JW, Leborgne-Castel N, Lerouge P, Boston RS, Faye L, Gomord V (2000) Protein recycling from the Golgi apparatus to the endoplasmic reticulum in plants and its minor contribution to calreticulin retention. Plant Cell 12:739–756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palacpac NQ, Yoshida S, Sakai H, Kimura Y, Fujiyama K, Yoshida T, Seki T (1999) Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci U S A 96:4692–4697

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park Y, Labriella CB (2005) Applications of fourier transform ion cyclotron mass spectrometry to oligosaccharides. Mass Spectrom Rev 24:232–264

    CAS  PubMed  Google Scholar 

  • Pattathil S, Avci U, Miller JS, Hahn MG (2012) Immunological approaches to plant cell wall and biomass characterization: Glycome Profiling. Methods Mol Biol 908:61–72

    CAS  PubMed  Google Scholar 

  • Patwa TH, Qiu Y, Zhao J, Simeone DM, Lubman DM (2009) All-liquid separations, protein microarrays, and mass spectrometry to interrogate serum proteomes: an application to serum glycoproteomics. Methods Mol Biol 520:75–87

    CAS  PubMed  Google Scholar 

  • Paulson JC, Blixt O, Collins BE (2006) Sweet spots in functional glycomics. Nat Chem Biol 2:238–248

    CAS  PubMed  Google Scholar 

  • Pilobello KT, Mahal LK (2007) Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr Opin Chem Biol 11:300–305

    CAS  PubMed  Google Scholar 

  • Pilobello KT, Agarwal P, Rouse R, Mahal LK (2013) Advances in lectin microarray technology: optimized protocols for piezoelectric print conditions. Curr Protoc Chem Biol 5(1):1–23

    PubMed  Google Scholar 

  • Pope DG (1977) Relationships between hydroxyproline containing proteins secreted into the cell wall and medium by suspension-cultured Acer pseudoplatanus cells. Plant Physiol 59:894–900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Potocka A, Zimowski J (2008) Metabolism of conjugated sterols in eggplant. Part 2. Phospholipid: steryl glucoside acyltransferase. Acta Biochim Pol 55:135–140

    CAS  PubMed  Google Scholar 

  • Prescher JA, Bertozzi CR (2006) Chemical technologies for probing glycans. Cell 126:851–854

    CAS  PubMed  Google Scholar 

  • Qi W, Fong C, Lamport DTA (1991) Gum arabic glycoprotein is a twisted hairy rope: a new model based on O-galactosylhydroxyproline as the polysaccharide attachment site. Plant Physiol 96:848–855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramachandran P, Boontheung P, Xie Y, Sondej M, Wong DT, Loo JA (2006) Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J Proteome Res 5:1493–1503

    CAS  PubMed  Google Scholar 

  • Raman R, Raghuram S, Venkataraman G, Paulson JC, Sasisekhran R (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2(11):817–824

    CAS  PubMed  Google Scholar 

  • Raman R, Venkataraman M, Ramakrishnan S, Lang W, Raguram S, Sasisekharanet R (2006) Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 16:82R–90R

    CAS  PubMed  Google Scholar 

  • Rudiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613

    CAS  PubMed  Google Scholar 

  • Russell DA (1999) Feasibility of antibody production in plants for human therapeutic use. Curr Top Microbiol Immunol 236:119–137

    Google Scholar 

  • Sala F, Manuela Rigano M, Barbante A, Basso B, Walmsley AM, Castiglione S (2003) Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives. Vaccine 21:803–808

    CAS  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Grajeda H, Guido T, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    CAS  PubMed  Google Scholar 

  • Schulte S, Stoffel W (1993) Ceramide UDP galactosyltransferase from myelinating rat brain: purification, cloning and expression. Proc Natl Acad Sci U S A 90:10265–10269

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seeberger PH, Werz DB (2007) Synthesis and medical applications of oligosaccharides. Nature 446:1046–1051

    CAS  PubMed  Google Scholar 

  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161

    CAS  PubMed  Google Scholar 

  • Sharp JM, Doran PM (2001a) Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol Bioeng 73:338–346. doi:10.1002/bit.1067

    CAS  PubMed  Google Scholar 

  • Sharp JM, Doran PM (2001b) Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol Prog 17:979–992. doi:10.1021/bp010104t

    CAS  PubMed  Google Scholar 

  • Shipp EL, Hsieh-Wilson LC (2007) Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem Biol 14:195–208

    CAS  PubMed  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    CAS  PubMed  Google Scholar 

  • Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, van der Sluijs P (1998) UDP-galactose: ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem 273:25880–25888

    CAS  Google Scholar 

  • Sturm A, Johnson KD, Szumilo T, Elbein AD, Chrispeels MJ (1987) Subcellular localization of glycosidases and glycosyltransferases involved in the processing of the N-linked oligosaccharides. Plant Physiol 85:741–745

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sturm A, Bergwerff AA, Vliegenthart JFG (1992) 1H-NMR structural determination of the N-linked carbohydrate chains on glycopeptides obtained from the bean lectin phytohemagglutinin. Eur J Biochem 204:313–316

    CAS  PubMed  Google Scholar 

  • Szumilo T, Kaushal GP, Elbein AD (1986a) Purification and properties of glucosidase I from mung bean seedlings. Arch Biochem Biophys 247:261–271

    CAS  PubMed  Google Scholar 

  • Szumilo T, Kaushal GP, Hori H, Elbein AD (1986b) Purification and properties of a glycoprotein processing α-mannosidase from mung bean seedling. Plant Physiol 81:383–389

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Amtzen CJ (2000) Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182:302–305

    CAS  PubMed  Google Scholar 

  • Tezuka K, Hayashi M, Ishihara H, Akazawa T, Takahashi N (1992) Studies on synthetic of xylose-containing N-linked oligosaccharides deduced from substrate specificities of the processing enzymes in sycamore cells (Acer pseudoplatanus L.). Eur J Biochem 203:401–413

    CAS  PubMed  Google Scholar 

  • Thobhani S, Yuen CT, Bailey MJ, Jones C (2009) Identification and quantification of N-linked oligosaccharides released from glycoproteins: an inter-laboratory study. Glycobiology 19:210–211

    Google Scholar 

  • van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-Acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    PubMed Central  PubMed  Google Scholar 

  • Vaquero C, Sack M, Schuster F, Finnern R, Drossard J, Schumann D, Reimann A, Fischer R (2002) A carcino embryonic antigen-specific diabody produced in tobacco. FASEB J 16:408–410

    CAS  PubMed  Google Scholar 

  • Varki A, Daniel H, Geschwind EEE (2008) Human uniqueness: genome interactions with environment, behaviour and culture. Nat Rev Genet 9:749–763

    PubMed Central  CAS  PubMed  Google Scholar 

  • von der Lieth CW, Lutteke T, Frank M (2006) The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochim Biophys Acta 1760:568–577

    PubMed  Google Scholar 

  • Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    CAS  Google Scholar 

  • Wandelt CI, Khan MRI, Craig S, Schroeder HE, Spencer D, Higgins TJV (1992) Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in leaves of transgenic plants. Plant J 2:181–192

    CAS  PubMed  Google Scholar 

  • Wang D, Liu S, Trummer BJ, Deng C, Wang A (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat Biotechnol 20:275–281

    CAS  PubMed  Google Scholar 

  • Wang CC, Lee JC, Luo SY, Kulkarni SS, Huang YW, Lee CC, Chang KL, Hung SC (2007) Regioselective one-pot protection of carbohydrates. Nature 446:896–899

    CAS  PubMed  Google Scholar 

  • Warnock DE, Lutz MS, Blackburn WA, Young WW Jr, Baenziger JU (1994) Transport of newly synthesized glucosylceramide to the plasma membrane by non-golgi pathway. Proc Natl Acad Sci U S A 91(7):2708–2712

    PubMed Central  CAS  PubMed  Google Scholar 

  • Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth CW, Seeberger PH (2007) Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis. ACS Chem Biol 2:685–691

    CAS  PubMed  Google Scholar 

  • Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    CAS  PubMed  Google Scholar 

  • Wigdorovitz A, Carillo C, Dus Santos M, Trono K, Peralta A, Gomez M, Rio R, Franzone SA, Escribano J, Borca M (1999) Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virology 255:347–353

    CAS  PubMed  Google Scholar 

  • Willats WG, Rasmussen SE, Kristensen T, Mikkelsen JD, Knox JP (2002) Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans. Proteomics 2(12):1666–1671

    CAS  PubMed  Google Scholar 

  • Wilson IBH (2002) Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol 12:569–577

    CAS  PubMed  Google Scholar 

  • Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27:378–386

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav DK, Ashraf S, Singh PK, Tuli R (2012) Localization of rabies virus glycoprotein into the endoplasmic reticulum produces immunoprotective antigen. Protein J 31:447–456

    CAS  PubMed  Google Scholar 

  • Yadav DK, Yadav N, Khurana SMP (2013) Molecular farming in the decades of Omics. In: OMICS applications in crop sciences. CRC Press-Taylor & Francis Group, USA, pp 563–602

    Google Scholar 

  • Yang BY, Gray JSS, Montgomery R (1996) The glycans of horseradish peroxidase. Carbohydr Res 287:203–212

    CAS  PubMed  Google Scholar 

  • Zachara NE, Hart GW (2006) Cell signaling, the essential role of O-GlcNAc. Biochim Biophys Acta 1761:599–617

    CAS  PubMed  Google Scholar 

  • Zaia J (2008) Mass spectrometry and the emerging field of glycomics. Chem Biol 15:881–892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zaia J (2010) Mass spectrometry and glycomics. OMICS 14(4):401–418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zamfir A, Vakhrushev S, Sterling A, Niebel HJ, Allen M, Peter-Katalinic J (2004) Fully automated chip based mass spectrometry for complex carbohydrate system analysis. Anal Chem 76:2046–2054

    CAS  PubMed  Google Scholar 

  • Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar M, Russell DR, Queen C, Cone RA, Whaley KJ (1998) A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 16:1361–1364. doi:10.1038/4344

    CAS  PubMed  Google Scholar 

  • Zhang P, Potrykus I, Puonti-Kaerlas J (2000) Efficient production of transgenic cassava using negative and positive selection. Transgenic Res 9:405–415

    CAS  PubMed  Google Scholar 

  • Zheng T, Yu H, Alexander CM, Beebe DJ, Smith LM (2007) Lectin-modified microchannels for mammalian cell capture and purification. Biomed Microdevices 9:611–617

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Paul Khurana Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Yadav, S., Yadav, D.K., Yadav, N., Khurana, S.M.P. (2015). Plant Glycomics: Advances and Applications. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_10

Download citation

Publish with us

Policies and ethics