Skip to main content

Omics of Model Plants

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

The multiple omics tools and strategies like high-throughput genome-scale genotyping platforms such as whole-genome re-sequencing, proteomics, and metabolomics provide greater opportunities to dissect molecular mechanisms and the discovery of key genes in developing ideal genotypes in the changing climate scenario. The last decade has seen rapid advances in functional genomic research globally. Most of the efforts involve construction of technological and resource platforms for high-throughput DNA sequencing, gene identification, and physical and genetic mapping; functional analysis of genomes for agronomic traits and biological processes; and identification and isolation of functional genes. The functional genomic research aims to understand how the genome functions at the whole-genome level, whereas proteomics looks for the systematic analysis of the protein population in a tissue, cell, or subcellular compartment. Metabolites are the end products of cellular process, and they show the response of biological systems to environmental changes. The current trend in metabolomic studies is to define the cellular status at a particular time point of development or physiological status. These techniques complement other techniques such as transcriptomics and proteomics and depict precise pictures of the whole cellular process. The growing number of sequenced plant genomes has opened up immense opportunities to study biological processes related to physiology, growth and development, and tolerance to biotic and abiotic stresses at the cellular and whole plant level using a novel systems-level approach. The “omics” approach integrates genome, proteome, transcriptome, and metabolome data into a single data set and can lead to the identification of unknown genes and their regulatory networks involved in metabolic pathways of interest. This will also help in understanding the genotype–phenotype relationship and consequently help to improve the quality and productivity of crop plants for the food and nutritional security of millions of human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu IA, Farinha AP, Negrão S, Gonçalves N, Fonseca C, Rodrigues M, Batista R, Saibo NJM, Oliveira MM (2013) Coping with abiotic stress: proteome changes for crop improvement. J Prot http://dx.doi.org/10.1016/j.jprot.2013.07.014

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    PubMed  Google Scholar 

  • Ahn SN, Kim YK et al (2000) Molecular mapping of a new gene for resistance to rice blast (Pyricularia grisea Sacc.). Euphytica 116(1):17–22

    CAS  Google Scholar 

  • Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, Zhang H, Swaller TJ, Lu YP, Bouck J, Flavell RB, Feldmann KA (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69(1–2):179–194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ali ML, Pathan MS, Zhang J, Bai G, Sarkarung S, Nguyen HT (2000) Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor Appl Genet 101:756–766

    CAS  Google Scholar 

  • Alison FP, Gillian PC, Reinier B et al (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653

    PubMed  Google Scholar 

  • Alonso-Blanco C, El-Assal S, Peeters AJM, Koornneef M (1997) Genetic analysis of developmental traits based on the Ler/Cvi natural variation. In: 8th international conference Arabidopsis research. Stanford University Press, Madison, p 121

    Google Scholar 

  • Amara I, Odena A, Oliveira E et al (2012) Insights into maize LEA proteins: from proteomics to functional approaches. Plant Cell Physiol 53(2):312–329

    CAS  PubMed  Google Scholar 

  • Ammiraju JSS, Jena KK, Reddy APK, Diwaker T, Vaidyanath K (2000) Identification of a molecular marker linked to a gene conferring resistance to Indian pathotype-I of Xanthomonas oryzae pv oryzae in rice. Plant Cell Biotechnol Mol Biol 1:63–66

    Google Scholar 

  • Andjelkovic V, Thompson R (2006) Changes in gene expression in maize kernel in response to water and salt stress. Plant Cell Rep 25(1):71–79

    CAS  PubMed  Google Scholar 

  • Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D’Hont A (2000) Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor Appl Genet 101:962–969

    CAS  Google Scholar 

  • Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13:152–156

    CAS  PubMed  Google Scholar 

  • Bassani M, Neumann PM, Gepstein S (2004) Differential expression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Mol Biol 56(3):367–380

    CAS  PubMed  Google Scholar 

  • Benjamin B, Nathalie F, Matt H et al (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6(5):e1000940

    Google Scholar 

  • Berloo RV, Stam P (1999) Comparison between marker-assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor Appl Genet 98:113–118

    Google Scholar 

  • Brenda YC, Steve AK (2013) Global approaches for telling time: Omics and the Arabidopsis circadian clock. Semin Cell Dev Biol 24(5):383–392

    Google Scholar 

  • Brizard JP, Carapito C, Delalande F, Van Dorsselaer A, Brugidou C (2006) Proteome analysis of plant–virus interactome: comprehensive data for virus multiplication inside their hosts. Mol Cell Proteomics 5:2279–2297

    CAS  PubMed  Google Scholar 

  • Brondani C, Brondani RPV, Rangel PHN, Ferreira ME (2001) Development and mapping of Oryza glumaepatula-derived microsatellite markers in the interspecific cross Oryza glumaepatula x O. sativa. Hereditas 134:59–71

    CAS  Google Scholar 

  • Campell BR, Soung Y, Posch TE, Cullis CA, Town CD (1992) Sequence and organization of 5S ribosomal RNA encoding genes of Arabidopsis thaliana. Gene 112:225–228

    CAS  PubMed  Google Scholar 

  • Cao J, Schneeberger K, Ossowski S et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43(10):956–963

    CAS  PubMed  Google Scholar 

  • Carreno-Quintero N et al (2012) Genetic analysis of metabolome–phenotype interactions: from model to crop species. Trends Genet 29:41–50

    PubMed  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    PubMed Central  CAS  PubMed  Google Scholar 

  • Che KP, Zhan QC, Xing QH, Wang ZP, Jin DM, He DJ, Wang B (2003) Tagging and mapping of rice sheath blight resistant gene. Theor Appl Genet 106:293–297

    CAS  PubMed  Google Scholar 

  • Chen F, Yuan Y, Li Q, He Z (2007) Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7:1529–1539

    CAS  Google Scholar 

  • Chen ZY, Brown RL, Damann KE, Cleveland TE (2010) PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Mol Plant Pathol 11(1):69–81

    CAS  PubMed  Google Scholar 

  • Childs KL, Davidson RM et al (2011) Gene coexpression network analysis as a source of functional annotation for rice genes. PLoS One 6(7):e22196

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christian R, Eysenberg AC, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Google Scholar 

  • Claire LG, Li JV et al (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Analysis 22(3):214–224

    Google Scholar 

  • Cooley MB, Goldsbrough AP, Still DW, Yoder JI (1996) Site-selected insertional mutagenesis of tomato with maize Ac and Ds elements. Mol Gen Genet 252:184–194

    CAS  PubMed  Google Scholar 

  • Copenhaver GP, Browne WE, Preuss D (1998) Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc Natl Acad Sci U S A 95:247–252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dal’Molin CG, Quek LE et al (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154(4):1871–1885

    PubMed  Google Scholar 

  • Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 580:3980–3988

    CAS  PubMed  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan LL, Shiloff BA, Bennetzen JL, Ramakrishna W, Yan LL (2001) Comparative sequence analysis of collinear barley and rice bacterial artificial chromosomes. Plant Physiol 125(3):1342–1353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farinha AP, Irar S, de Oliveira E, Oliveira MM, Pages M (2011) Novel clues on abiotic stress tolerance emerge from embryo proteome analyses of rice varieties with contrasting stress adaptation. Proteomics 11:2389–2405

    CAS  PubMed  Google Scholar 

  • Farré EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15:293–300

    PubMed  Google Scholar 

  • Fatma K, Joachim K, Haskell DW, Wei Z, Cameron SK, Nicole G, Dong YS, Charles LG (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2010) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16(2):77–88

    Google Scholar 

  • Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    CAS  PubMed  Google Scholar 

  • Frey M, Stettner C, Gierl A (1998) A general method for gene isolation in tagging approaches: amplification of insertion mutagenized sites (AIMS). Plant J 13:717–721

    CAS  Google Scholar 

  • Fujii K, Hayano Saito Y, Saito K, Sugiura N, Hayashi N, Tsuji T, Izawa T, Iwasaki M (2000) Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1, in rice. Breed Sci 50:183–188

    CAS  Google Scholar 

  • Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185–190

    CAS  Google Scholar 

  • Fukuoka S, Saka N, Koga H et al (2009) Loss of function of a protein containing protein confers durable disease resistance in rice. Science 325:998–1001

    CAS  PubMed  Google Scholar 

  • Gupta HS, Aggarwal PK, Mahajan V et al (2009) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237

    Google Scholar 

  • Hagenblad J, Tang C, Molitor J, Werner J, Zhao K, Zheng H, Marjoram P, Weigel D, Nordborg M (2004) Haplotype structure and phenotypic associations in the chromosomal regions surrounding two Arabidopsis thaliana flowering time loci. Genetics 168:1627–1638

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6:1451–1460

    CAS  PubMed  Google Scholar 

  • Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243

    CAS  PubMed  Google Scholar 

  • Henry RJ (2011) Next generation sequencing for accelerating crop domestication. Brief Funct Genomics 2(1):51–56

    Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93:7783–7788

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res 9:117–121

    CAS  PubMed  Google Scholar 

  • Hu X, Li Y, Li C, Yang H, Wang W, Lu M (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29:455–464

    CAS  Google Scholar 

  • Huang Z, He G, Shu L, Li X, Zhang Q (2001) Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet 102:929–934

    CAS  Google Scholar 

  • Hunter S, Jones P et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izawa T et al (2009) DNA changes tell us about rice domestication. Curr Opin Plant Biol 12:185–192

    CAS  PubMed  Google Scholar 

  • Jeon JS, Lee S, Jung K et al (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22(6):561–570

    CAS  PubMed  Google Scholar 

  • Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y et al (2006) Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant J 48(5):710–727

    CAS  PubMed  Google Scholar 

  • Jiang Y et al (2011) Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.08.013

    PubMed  Google Scholar 

  • Jones AME, Thomas V, Truman B, Lilley K, Mansfield J, Grant M (2004) Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry 65:1805–1816

    CAS  PubMed  Google Scholar 

  • Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M et al (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    PubMed  Google Scholar 

  • Jun K, Kazuo S, Takashi H (2004) Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant Cell Physiol 45(8):1099–1104

    Google Scholar 

  • Jun C, Korbinian S, Stephan O, Torsten G (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43(10):956–965

    Google Scholar 

  • Katiyar SK, Tan Y, Huang B, Chandel G, Xu Y, Zhang Y, Xie Z, Bennett J (2001) Molecular mapping of gene Gm-6(t) which confers resistance against four biotypes of Asian rice gall midge in China. Theor Appl Genet 103:6–7

    Google Scholar 

  • Katja B et al (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938

    Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H et al (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13(4):889–905

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kennard WC, Phillips RL, Porter RA, Grombacher AW (2000) A comparative map of wild rice (Zizania palustris L. 2n = 2x = 30). Theor Appl Genet 101:677–684

    CAS  Google Scholar 

  • Khowaja FS, Norton GJ, Courtois B, PricE AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:276

    PubMed Central  PubMed  Google Scholar 

  • Kim JK, Takeshi B, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58(3):415–424

    CAS  PubMed  Google Scholar 

  • Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J et al (2013a) In-depth insight into in vivo apoplastic secretome of rice–Magnaporthe oryzae interaction. J Proteomics 78:58–71

    CAS  PubMed  Google Scholar 

  • Kim SL, Choi M, Jung K-H, An G (2013b) Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar. J Exp Bot. doi:10.1093/jxb/ert226

    Google Scholar 

  • Kleffmann T, Russenberger D, Von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    CAS  PubMed  Google Scholar 

  • Klein M, Ute EO, Ina S, Petra B, Michael U, Axel B, Wolfgang S (1994) Physical mapping of the mitochondrial genome of Arabidopsis thaliana by cosmid and YAC clones. Plant J 6(3):447–455

    CAS  PubMed  Google Scholar 

  • Knapp SJ (1994) Selection using molecular marker indexes. In: Proceedings of the 2nd plant breeding symposium of the Crop Science Society of America, American Society for Horticultural Science, Alexandria, pp 1–11

    Google Scholar 

  • Knapp SJ (1998) Marker assisted selection as a strategy for increasing the probability of selecting superior genotypes. In: Abstracts plant and animal genome conference VI. Scherago international, San Diego, p PA5

    Google Scholar 

  • Kohli A, Xiong J, Greco R, Christou P, Pereira A (2001) Tagged Transcriptome Display (TTD) in indica rice using Ac transposition. Mol Genet Genom 266(1):1–11

    CAS  Google Scholar 

  • Koornneef M, Von Elden J, Hanhart CJ et al (1983) Linkage map of Arabidopsis thaliana. J Hered 74:265–272

    Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172

    CAS  PubMed  Google Scholar 

  • Kuittinen H, Sillanpa MJ, Savolainen O et al (1997) Genetic basis of adaptation: flowering time in Arabidopsis thaliana. Theor Appl Genet 95:573–583

    Google Scholar 

  • Kunpeng L, Xu C, Zhang J (2011) Proteome profile of maize (Zea mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection. Gene 485(2):106–113

    Google Scholar 

  • Kusano M, Fukushima A, Kobayashi M et al (2007) Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J Chromatogr 855:71–79

    CAS  Google Scholar 

  • Kusano M, Fukushima A, Redestig H, Saito K (2011) Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot 62:1432–1453

    Google Scholar 

  • Lai KS, Nakayama PK, Iwano M, Takayama S (2012) A TILLING resource for functional genomics in Arabidopsis thaliana accession C24. Genes Genet Syst 87:291–297

    CAS  PubMed  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li YangSheng, Zheng XianWu, Li-ShaoQing et al. (2001) Quantitative trait loci analysis of leaf morphology in rice. CRRN, Chin Rice Res Newsl 9(1):2–4

    Google Scholar 

  • Li L, Li H, Li J, Xu S, Yang X, Yan J (2010) A genome-wide survey of maize lipid-related genes: candidate genes mining, digital gene expression profiling and co-location with QTL for maize kernel oil. Sci China Life Sci 53(6):690–700

    PubMed  Google Scholar 

  • Liao M, Li Y, Wang Z (2009) Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics 9:2809–2819

    CAS  PubMed  Google Scholar 

  • Linde K, Kastner C, Kumlehn J, Kahmann R, Doehlemann G (2011) Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol 189:471–483

    PubMed  Google Scholar 

  • Lisec J, Meyer RC, Steinfath M et al (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 53:960–972

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4:745–750

    CAS  Google Scholar 

  • Liu L, Mei Q, Yu Z, Sun T, Zhang Z, Chen M (2013a) An integrative bioinformatics framework for genome-scale multiple level network reconstruction of rice. J Integr Bioinform 10(2):223

    PubMed  Google Scholar 

  • Liu Y, Li M, Han C, Wu F, Tu B, Yang P (2013b) Comparative proteomic analysis of rice shoots exposed to high arsenate. J Integr Plant Biol 55(10):965–978

    CAS  PubMed  Google Scholar 

  • Lu HF, Dong HT, Sun CB, Qing DJ, Li N, Wu ZK, Wang ZQ, Li YZ (2011) The panorama of physiological responses and gene expression of whole plant of maize inbred line YQ7-96 at the three-leaf stage under water deficit and re-watering. Theor Appl Genet 123(6):943–958

    PubMed  Google Scholar 

  • Ma LY, Zhuang JY, Liu GJ, Min SK, Li XM, Ma LY, Zhuang JY, Liu GJ, Min SK, Li XM (2002) Mapping of a new gene Wbph 6(t) resistant to whitebacked planthopper (Sogatella furcifera Horvath) in rice. Chin J Rice Sci 16(1):15–18

    Google Scholar 

  • Ma HY, Song LR, Shu YJ, Wang S, Niu J, Wang ZK et al (2012) Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J Proteomics 75:1529–1546

    CAS  PubMed  Google Scholar 

  • Mahmood T, Jan A, Kakishima M, Komatsu S (2006) Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 6:6053–6065

    CAS  PubMed  Google Scholar 

  • Mammadov JA, Chen W, Ren R, Pai R, Marchione W et al (2012) Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding. Theor Appl Genet 121(3):577–588

    Google Scholar 

  • Marcelo M, Kuhnen S, Lemos PMM, de Oliveira SK, da Silva DA, Tomazzoli MM, Souza ACV, Pinto RM et al (2012) Metabolomics and chemometrics as tools for chemo(bio)diversity analysis – maize landraces and propolis. In: Dr. Kurt V (ed) Chemometrics in practical applications. InTech, China and Croatia. ISBN 978-953-51-0438-4

    Google Scholar 

  • Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol 179:116

    CAS  PubMed  Google Scholar 

  • Masami YH, Mitsuru Y, Dayan BG et al (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101(27):10205–10210

    Google Scholar 

  • Masami YH, Sugiyama K, Sawada Y (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci U S A 104(15):6478–6483

    Google Scholar 

  • McGinnis K, Murphy N, Carlson AR, Akula A, Akula C, Basinger H et al (2007) Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiol 143(4):1441–1451

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mechin V, Balliau T et al (2004) A two-dimensional proteome map of maize endosperm. Phytochemistry 65:1609–1618

    CAS  PubMed  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J et al (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:4759–4764

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102(1):41–52

    CAS  Google Scholar 

  • Morris M, Dreher K, Ribaut JM, Khairallah M (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol Breed 11:235–247

    Google Scholar 

  • Murai H, Hashimoto Z, Sharma PN, Shimizu T, Murata K, Takumi S, Mori N, Kawasaki S, Nakamura C (2001) Construction of a high-resolution linkage map of a rice brown planthopper (Nilaparvata lugens Stal) resistance gene bph2. Theor Appl Genet 103:526–532

    CAS  Google Scholar 

  • Murata M, Heslop-Harrison JS, Fusao M (1997) Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant J 12(1):31–37

    CAS  PubMed  Google Scholar 

  • Ni J, Colowit PM, Oster JJ, Xu K, Mackill DJ (2001) Molecular markers linked to stem rot resistance in rice. Theor Appl Genet 102:511–516

    CAS  Google Scholar 

  • Nicole S, Exner V, Probst A, Gruissem W, Hennig L (2006) Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J Biol Chem 281:9560–9568

    Google Scholar 

  • Okushima Y, Overvoorde PJ, Kazunari A et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pavlík M, Pavlíková D, Vašíčková S (2010) Infrared spectroscopy-based metabolomic analysis of maize growing under different nitrogen nutrition. Plant Soil Environ 56(11):533–540

    Google Scholar 

  • Pechanova O, Takáč T, Šamaj J, Pechan T (2013) Maize proteomics: an insight into the biology of an important cereal crop. Proteomics 13(3–4):637–662. doi:10.1002/pmic.201200275

    CAS  PubMed  Google Scholar 

  • Peltier JB, Ytterberg AJ, Sun Q, Klaas JW (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279:49367–49383

    CAS  PubMed  Google Scholar 

  • Pia GS, Luis OS, Singh KB, Harvey M (2004) Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific Phi and Tau classes. Plant Mol Biol 54(2):205–219

    Google Scholar 

  • Poroyko V, Spollen WG, Hejlek LG, Hernandez AG, LeNoble ME, Davis G et al (2007) Comparing regional transcript profiles from maize primary roots under well-watered and low water potential conditions. J Exp Bot 58(2):279–289

    PubMed  Google Scholar 

  • Prasad SR, Bagali PG, Shailaja H, Shashidhar HE, Hittalmani S (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 78:162–164

    CAS  Google Scholar 

  • Priya P, Jain M (2013) RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. doi:10.1093/database/bat027

  • Richard MC, Muhammed A, Deborah AW, Prescott MC, Steven MS, Huw HR, Brian T (2010) Differential proteomic analysis of Arabidopsis thaliana genotypes exhibiting resistance or susceptibility to the insect herbivore, Plutella xylostella. PLoS One 5(4):e10103, 1–14

    Google Scholar 

  • Ragot M, Biasiolli M et al. (1995) Marker-assisted backcrossing: a practical example. Techniques et utilisations des marqueurs moléculaires, Les Colloques, INRA, Paris 72: 45–56

    CAS  Google Scholar 

  • Ralf S, De Vos RCH, Bartelniewoehner L, Ishihara H, Sagasser M, Martens S, Weisshaar B (2009) Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Planta 229(2):427–445

    Google Scholar 

  • Ryo N, Miyako K, Makoto K et al (2009) Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 70(8):1017–1029

    Google Scholar 

  • Sa KJ, Park JY, Park KC, Lee JK (2012) Analysis of genetic mapping in a waxy/dent maize RIL population using SSR and SNP markers. Genes Genomics 34(2): 157–164

    CAS  Google Scholar 

  • Saito K, Miura K, Nagano K, Hayano Saito Y, Araki H, Kato A (2001) Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet 103:862–868

    CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crop Res 76:199–219

    Google Scholar 

  • Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000) Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci 40:792–797

    CAS  Google Scholar 

  • Sang T, Ge S (2007) The puzzle of rice domestication. J Integr Plant Biol 49:760–768

    CAS  Google Scholar 

  • Sardesai N, Kumar A, Rajyashri KR, Nair S, Mohan M (2002) Identification and mapping of an AFLP marker linked to Gm7, a gall midge resistance gene and its conversion to a SCAR marker for its utility in marker aided selection in rice. Theor Appl Genet 105:691–698

    CAS  PubMed  Google Scholar 

  • Sato S, Hirokazu K, Reiko H, Liu Y-G, Daisuke S, Satoshi T (1998) A physical map of Arabidopsis thaliana chromosome 3 represented by two contigs of CIC YAC, PI, TAC and BAC clones. DNA Res 5:163–168

    CAS  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290

    CAS  PubMed  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422(6929):297–302

    CAS  PubMed  Google Scholar 

  • Schmidt R, West J, Love K et al (1995) Physical map and organization of Arabidopsis thaliana chromosome 4. Science 270:480–483

    CAS  PubMed  Google Scholar 

  • Sekhon RS, Lin H, Childs KL et al (2011) Genome-wide atlas of transcription during maize development. Plant J 66(4):553–563

    CAS  PubMed  Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

    CAS  PubMed  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83

    CAS  Google Scholar 

  • Shi LY, Hao ZF, Weng JF, Xie CX et al (2012) Identification of a major quantitative trait locus for resistance to maize rough dwarf virus in a Chinese maize inbred line X178 using a linkage map based on 514 gene-derived single nucleotide polymorphisms. Mol Breed 30:1–11

    Google Scholar 

  • Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki KI, Maeshima M, Yokota A, Tomizawa KI, Mimura T (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cell of Arabidopsis thaliana. Plant Cell Physiol 45:672–683

    CAS  PubMed  Google Scholar 

  • Shu XL, Frank T, Shu QY, Engel KH (2008) Metabolite profiling of germinating rice seeds. J Agric Food Chem 56:11612–11620

    CAS  PubMed  Google Scholar 

  • Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139

    CAS  PubMed  Google Scholar 

  • Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2003) Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant, Flooding and plant growth: Selected papers from the 7th conference of the International Society for Plant Anaerobiosis (ISPA), Nijmegen, 12–16 June 2001. Annals Bot 91(Special Issue):255–261

    Google Scholar 

  • Simon M, Olivier L, Stéphanie D et al (2008) Quantitative trait loci mapping in five new large recombinant inbred line populations of Arabidopsis thaliana genotyped with consensus single-nucleotide polymorphism markers. Genetics 178:2253–2264

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015

    CAS  Google Scholar 

  • Smilde WD, Haluskova J, Sasaki T, Graner A (2001) New evidence for the synteny of rice chromosome 1 and barley chromosome 3H from rice expressed sequence tags. Genome 44:361–367

    CAS  PubMed  Google Scholar 

  • Snape JW, Sarma R, Quarrie SA, Fish L, Galiba G, Sutka J (2001) Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 120:309–315

    CAS  Google Scholar 

  • Soderlund C, Descour A, Kudrna D (2009) Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genet 5(11):e1000740

    PubMed Central  PubMed  Google Scholar 

  • Spollen WG, Tao W, Valliyodan B et al (2008) Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biol 8:32

    PubMed Central  PubMed  Google Scholar 

  • Sripongpangkul K, Posa GBT, Senadhira DW, Brar D, Huang N, Khush GS, Li ZK (2000) Genes/QTLs affecting flood tolerance in rice. Theor Appl Genet 101:1074–1081

    CAS  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker facilitated investigations of quantitative traits loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Google Scholar 

  • Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA, Rani NS, Sarma NP, Sonti RV (2008) Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411–422

    Google Scholar 

  • Swidzinski JA, Leaver CJ, Sweetlove LJ (2004) A proteomic analysis of plant programmed cell death. Phytochemistry 65:1829–1838

    CAS  PubMed  Google Scholar 

  • Szponarski W, Sommerer N, Boyer JC, Rossignol M, Gibrat R (2004) Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography. Proteomics 4:397–406

    CAS  PubMed  Google Scholar 

  • Takahara K, Kasajima I, Takahashi H, Hashida S, Itami T, Onodera H, Toki S, Yanagisawa S, Kawai-Yamada M, Uchimiya H (2010) Metabolome and photochemical analysis of rice plants overexpressing Arabidopsis NAD kinase gene. Plant Physiol 152:1863–1873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takayuki T, Keiko Yonekura S et al (2007) Phytochemical genomics in Arabidopsis thaliana: a case study for functional identification of flavonoid biosynthesis genes. Pure Appl Chem 79(4):811–823

    Google Scholar 

  • Takeuchi Y, Hayasaka H, Chiba B, Tanaka I, Shimano T, Yamagishi M, Nagano K, Sasaki T, Yano M (2001) Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate Japonica rice. Breed Sci 51:191–197

    CAS  Google Scholar 

  • Tao Q, Chang YL, Wang JZ et al (2001) Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics 158:1711–1724

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tarpley L, Duran A, Kebrom T, Sumner L (2005) Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 5:8

    PubMed Central  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    PubMed Central  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2046

    Google Scholar 

  • Tom PJD, Svenja H, Shadforth IP, John R et al (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103(17):6518–6523

    Google Scholar 

  • Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits, flooding and plant growth: selected papers from the 7th conference of the International Society for Plant Anaerobiosis (ISPA), Nijmegen, 12–16 June 2001. Annals Bot 91:243–253

    Google Scholar 

  • Varshney RK, Nayak SN, May GD et al (2009) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    CAS  PubMed  Google Scholar 

  • Ventelon-Debout M, Delalande F, Brizard JP, Diemer H, Van Dorsselaer A, Brugidou C (2004) Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics 4:216–225

    CAS  PubMed  Google Scholar 

  • Wakasa K, Hasegawa H, Nemoto H, Matsuda F et al (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57:3069–3078

    CAS  PubMed  Google Scholar 

  • Wang W, Zhai W et al (2001) Chromosome landing at the bacterial blight resistance gene Xa4 locus using a deep coverage rice BAC library. Mol Genet Genomics 265:118–125

    CAS  PubMed  Google Scholar 

  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52(4):873–891

    CAS  PubMed  Google Scholar 

  • Ward ER, Jen GC (1990) Isolation of single copy sequence clones from a yeast artificial chromosome library of randomly-sheared Arabidopsis thaliana DNA. Plant Mol Biol 14:561–568

    CAS  PubMed  Google Scholar 

  • Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62:949–957

    CAS  PubMed  Google Scholar 

  • Wassom JJ, Mikkelineni V, Bohn MO, Rocheford TR (2008) QTL for fatty acid composition of maize kernel oil in Illinois high oil 9 B73 backcross-derived lines. Crop Sci 48:69–78

    CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Smith IH, Hochstrasser DF et al (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    CAS  PubMed  Google Scholar 

  • Willcox MC, Khairallah MM, Bergvinson D et al (2002) Selection for resistance to southwestern corn borer using marker-assisted and conventional backcrossing. Crop Sci 42:1516–1528

    Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Varshney RK, Kunze G, Buck-Sorlin GH et al (2010) Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ 33:211–222

    CAS  PubMed  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Taguchi Shiobara F, Ukai Y, Sasaki T, Yano M (2001) Mapping quantitative trait loci for days-to-heading, and culm, panicle and internode lengths in a BC1F3 population using an elite rice variety, Koshihikari, as the recurrent parent. Breed Sci 51:63–71

    CAS  Google Scholar 

  • Yamasaki M, Yoshimura A, Yasui H (2000) Mapping of quantitative trait loci of ovicidal response to brown planthopper (Nilaparvata lugens Stal) in rice (Oryza sativa L.). Breed Sci 50:291–296

    CAS  Google Scholar 

  • Yu LX, Setter TL (2003) Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol 131(2):568–582

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yun KY, Park MR et al (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10:16

    PubMed Central  PubMed  Google Scholar 

  • Zachgo EA, Wang ML, Dewdney J et al (1996) A physical map of chromosome 2 of Arabidopsis thaliana. Genome Res 6:19–25

    CAS  PubMed  Google Scholar 

  • Zhang J, Zheng HG et al (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103:19–29

    CAS  Google Scholar 

  • Zhang J, Guo D, Chang YX, You CJ, Li XW, Dai XX et al (2007) Non-random distribution of TDNA insertions at various levels of the genome hierarchy as revealed by analyzing 13804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947–959

    CAS  PubMed  Google Scholar 

  • Zhang P, Dreher K et al (2010) Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol 153(4):1479–1491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y (2004) Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol 55(6):807–823

    CAS  PubMed  Google Scholar 

  • Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland AJ (2001) Genetic dissection of heading time and its components in rice. Theor Appl Genet 102:1236–1242

    CAS  Google Scholar 

  • Zhou ML, Zhang Q, Zhou M, Qi LP et al (2012) Aldehyde dehydrogenase protein superfamily in maize. Funct Integr Genomics 12:683–691

    CAS  PubMed  Google Scholar 

  • Zhuang Y, Ren G, Yue G, Li Z, Qu X, Hou G, Zhu Y, Zhang J (2007) Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize. Plant Cell Rep 26:2137–2147

    CAS  PubMed  Google Scholar 

  • Zinselmeier C, Lauer MJ, Boyer JS (1995) Reversing drought-induced losses in grain yield: sucrose maintains embryo growth in maize. Crop Sci 35:1390–1400

    Google Scholar 

  • Zinselmeier C, Sun Y, Helentjaris T, Beatty M, Yang S, Smith H, Habben J (2002) The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Field Crop Res 75:111–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Agrawal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Agrawal, P.K., Babu, B.K., Saini, N. (2015). Omics of Model Plants. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_1

Download citation

Publish with us

Policies and ethics