Skip to main content

Imidazolium Ionic Liquids: An Environment-Friendly Medium for Various Applications

  • Chapter
  • First Online:
Green Chemistry: Synthesis of Bioactive Heterocycles

Abstract

Imidazolium ionic liquid has been explored as a recyclable and reusable reaction medium. It not only acts as a reaction medium but also enhances the rate of reaction. The present chapter focuses on its use in different reactions for the synthesis of bioactive organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, p 30

    Google Scholar 

  2. Clarke J, Macquarrie D (2002) Handbook of green chemistry and technology. Blackwell, Oxford.

    Google Scholar 

  3. Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351

    CAS  Google Scholar 

  4. Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772

    CAS  Google Scholar 

  5. Fischer T, Sethi T, Welton T, Woolf J (1999) Diels-Alder reactions in room temperature ionic liquids. Tetrahedron Lett 40:793–796

    CAS  Google Scholar 

  6. Earle MJ, McMormac PB, Seddon KR (1999) Diels-Alder reactions in ionic liquids. Green Chem 1:23–25.

    CAS  Google Scholar 

  7. Leadbeater NE, Torenius HMA (2002) Study of ionic liquid mediated microwave heating of organic solvents. J Org Chem 67:3145–3148

    CAS  Google Scholar 

  8. Chen IH, Young JN, Yu SJ (2004) Recyclable organotungsten Lewis acid and microwave assisted Diels-Alder reactions in water and in ionic liquids. Tetrahedron 60:11903–11909

    CAS  Google Scholar 

  9. Lopez I, Silvero G, Arevalo MJ, Babiano R, Palacious JC, Bravo JL (2007) Enhanced Diels-Alder reactions: on the role of mineral catalyst and microwave irradiation in ionic liquids as recyclable media. Tetrahedron 63:2901–2906

    CAS  Google Scholar 

  10. Wang Z, Wang Q, Zhang Y, Bao W (2005) New generation ionic liquids. Tetrahedron Lett 46:4657–4660

    CAS  Google Scholar 

  11. Yadav JS, Reddy BVS, Baishya G, Narsaiah AV (2005) Copper(II) triflate immobilized in [bmim]BF4 ionic liquid: an efficient reaction medium for Michael addition of β-Ketoesters to acceptor activated alkenes. Chem Lett 34:102

    CAS  Google Scholar 

  12. Ranu BC, Banerjee S (2005) Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. Org Lett 7:3049–3052

    CAS  Google Scholar 

  13. Ranu BC, Dey SS (2004) Catalysis by ionic liquid: a simple, green and efficient procedure for the Michael addition of thiols and thiophosphate to conjugated alkenes in ionic liquid, [pmIm]Br. Tetrahedron 60:4183–4188

    CAS  Google Scholar 

  14. Xu LW, Li JW, Zhou SL, Xia CG (2004) A green, ionic liquid and quaternary ammonium salt-catalyzed aza-Michael reaction of α,β-ethylenic compounds with amines in water. New J Chem 28:183–184

    CAS  Google Scholar 

  15. Xu LW, Li L, Xia CG, Zhou SL, Li JW (2004) The first ionic liquids promoted conjugate addition of azide ion to α,β-unsaturated carbonyl compounds. Tetrahedron Lett 45:1219–1221

    CAS  Google Scholar 

  16. Kantam ML, Neeraja V, Kavita B, Neelima B, Chaudhuri MK, Hussain S (2005) Cu(acac)2 immobilized in ionic liquids: a recoverable and reusable catalytic system for aza-michael reactions. Adv Synth Catal 347:763–766

    CAS  Google Scholar 

  17. Gallo V, Giardina-Papa D, Mastrorilli P, Nobile CF, Suranna GP, Wang Y (2005) Asymmetric Michael addition promoted by (R, R)-trans-1,2-diaminocyclohexane in ionic liquids. J Organomet Chem 690:3535–3539

    CAS  Google Scholar 

  18. Zare A, Hasaninejad A, Khalafi-Nezhad A, Zare ARM, Parhami A (2007) Organic reactions in ionic liquids: MgO as efficient and reusable catalyst for the Michael addition of sulfonamides to α,β-unsaturated esters under microwave irradiation. Arkivoc xiii:105–115

    Google Scholar 

  19. Zare A, Hasaninejad A, Zare ARM, Parhami A, Sharghi H, Khalafi-Nezhad A (2007) Zinc oxide as a new, highly efficient, green, and reusable catalyst for microwave-assisted Michael addition of sulfonamides to α,β-unsaturated esters in ionic liquids. Can J Chem 85:438–444

    CAS  Google Scholar 

  20. Leadbeater NE, Torenius HM, Tye H (2003) Ionic liquids as reagents and solvents in conjunction with microwave heating: rapid synthesis of alkyl halides from alcohols and nitriles from aryl halides. Tetrahedron 59:2253–2258

    CAS  Google Scholar 

  21. Ranu B, Jana R (2005) Catalysis by ionic liquid. A green protocol for the stereoselective debromination of vicinal-dibromides by [pmIm]BF4 under microwave irradiation. J Org Chem 70:8621–8624

    CAS  Google Scholar 

  22. Ranu BC, Chattopadhyay K, Jana R (2007) Ionic liquid promoted selective debromination of α-bromoketones under microwave irradiation. Tetrahedron 63:155–159

    CAS  Google Scholar 

  23. Kim YJ, Varma RS (2005) Microwave-assisted preparation of imidazolium-based Etrachloroindate(III) and their application in the tetrahydropyranylation of alcohols. Tetrahedron Lett 46:1467–1469

    CAS  Google Scholar 

  24. Sing J, Gupta N, Kad GL (2006) Efficient role of ionic liquid (bmim) HSO4 as novel catalyst for monotetrahydropyranylation of diols and tetrahydro pyranylation of alcohols. Synth Commun 36:2893–2900

    Google Scholar 

  25. Peng J, Deng Y (2001) Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Lett 42:5917

    CAS  Google Scholar 

  26. Keglevich G, Baan Z, Hermecz I, Novak T, Odinets IL (2007) The phosphorus aspects of green chemistry: the use of quaternary phosphonium salts and 1,3 dialkylimidazolium hexafluorophosphates in organic synthesis. Curr Org Chem 11:107–126

    CAS  Google Scholar 

  27. Peipei S, Xin Y, Zhixin H (2006) One-pot synthesis of α-amino phosphonates in chloroaluminate-based ionic liquid. J Chem Res 4:240–241

    Google Scholar 

  28. Xu F, Luo Y, Deng M, Shen Q (2003) One-pot synthesis of α-amino phosphonates using samarium diiodide as a catalyst precursor. Eur J Org Chem 24:47284730

    Google Scholar 

  29. Mehdi H, Bodor A, Lantos D, Horvath IT, DeVos DE, Binnemans K (2007) Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions. J Org Chem 72:517–524

    CAS  Google Scholar 

  30. Park HJ, Lee JC (2009) Oxidation of benzylic alcohols with urea-hydrogen peroxide and catalytic magnesium bromide. Synlett 2009:79–80

    Google Scholar 

  31. Antunes MM, Lima S, Pillinger M, Valente AA (2012) Coupling of nanoporous chromium, aluminium-containing silicates with an ionic liquid for the transformation of glucose into 5-(Hydroxymethyl)-2-furaldehyde. Molecules 17:3690–3707

    CAS  Google Scholar 

  32. Sarkar A, Roy SR, Parikh N, Chakraborti AK (2011) Nonsolvent application of ionic liquids: organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency. J Org Chem 76:7132–7140

    CAS  Google Scholar 

  33. Jeong Y, Ryu JS (2010) Synthesis of 1,3-dialkyl-1,2,3-triazolium ionic liquids and their applications to the Baylis-Hillman reaction. J Org Chem 75:4183–4191

    CAS  Google Scholar 

  34. Vale JA, Zanchetta DF, Moran PJS, Rodrigues JAR (2009) Efficient α methylenation of carbonyl compounds in ionic liquids at room temperature. Synlett 2009:75–78

    Google Scholar 

  35. Kantam ML, Neelima B, Sreedhar B, Chakravarti R (2008) Copper-catalyzed sulfonylation of arylboronic acids in ionic liquids. Synlett 2008:1455–1458

    Google Scholar 

  36. Walden P (1914) Uber die Molekulargrosse und elek trische Leitfahigkeit einiger gesehmolzenen Salze. Bull Acad Impér Sci 8:405–422 (St. Petersburg)

    Google Scholar 

  37. Hurley FH, Weir TP (1951) The electrodedeposition from nonaqueous solution at room temperature. J Electrochem Soc 98:207–212

    CAS  Google Scholar 

  38. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem Commun 1992:965–967

    Google Scholar 

  39. Welton T (1999) Room-temperature ionic liquids solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    CAS  Google Scholar 

  40. Wasserscheid P, Welton T eds (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim and references cited therein

    Google Scholar 

  41. a) Chum HL, Kock VRL, Miller L, Osteryoung RA (1975) Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J Am Chem Soc 97(11):3264–3265 (b) Robinson J, Osteryoung RA (1979) An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. J Am Chem Soc 101:323–327

    Google Scholar 

  42. Wilkes JS, Levinsky JA, Wilson RA, Hussey CA (1982) Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg Chem 21:1263–1264

    CAS  Google Scholar 

  43. Scheffler TB, Hussey CL, Seddon KR, Kear CM, Armitage PD (1983) Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: stabilization of hexachloromolybdate (2-) and hexachloromolybdate (3-). Inorg Chem 22(15):2099–2100

    CAS  Google Scholar 

  44. Appleby D, Hussey CL, Seddon KR, Turp JE (1986) Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature 323:614–616

    CAS  Google Scholar 

  45. Boon JA, Levisky JA, Pflug JL, Wilkes JS (1986) Frieldel craft reaction in ambient temperature molten salt. J Org Chem 51:480–483

    CAS  Google Scholar 

  46. Chauvin Y, Gilbert B, Guibard I (1990) Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. Chem Commun 1990:1715–1716

    Google Scholar 

  47. Carlin RT, Osteryoung RA (1990) Complexation of Cp2MCl2 in a chloroaluminate molten salt: relevance to homogeneous Ziegler-Natta catalysis. J Mol Catal 63:125–129

    CAS  Google Scholar 

  48. Bonhote P, Dias A, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic highly conductive ambient-temperature molten salts. Inorg Chem 35:1168

    CAS  Google Scholar 

  49. Fuller J, Carlin RT (1998) Facile Preparation of Tetrafluoroborate and Trifluoromethanesulfonate Room-Temperature Ionic Liquids. In: Truvol PC, Delong HC, Stafford CR, Deki S (eds) Proceedings of the 11th international symposium on molten salts XI. The Electrochemical Society, Inc., Pennington 98(11):227–230

    Google Scholar 

  50. MacFarlane DR, Meakin P, Sun J, Amini N, Forsyth M (1999) Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J Phys Chem B 103(20):4164–4170

    CAS  Google Scholar 

  51. Michael F (2009) Ionic liquids. RSC Publishing, Cambridge. ISBN 9781847551610

    Google Scholar 

  52. Barbara K (2010) Ionic liquids, vol 290. Springer, Heidelberg. ISBN 9783642017797

    Google Scholar 

  53. Roberta B, Antonietta C, Giancarlo F, Antonella G (2003) CH3ReO3/H2O2 in room temperature ionic liquids: an homogeneous recyclable catalytic system for the Baeyer-Villiger reaction. Tetrahedron Lett 44:8991–8994

    Google Scholar 

  54. Seda K, Defne KT, Ugur A, Ner H (2007) A review of ionic liquids towards supercritical fluid applications. J Supercritical Fluids 43:150–180

    Google Scholar 

  55. Emelyanenko VN, Verevkin SP, Heintz A (2009) Imidazolium-based ionic liquids. 1-Methyl imidazolium nitrate: thermochemical measurements and ab initio calculations. J Phys Chem B 113:9871–9876

    CAS  Google Scholar 

  56. Tamar LG, Calum JD (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    Google Scholar 

  57. Feng R, Zhao D, Guo Y (2010) Revisiting characteristics of ionic liquids: a review for further application development. J Environ Protection 1:95–104

    Google Scholar 

  58. Ichiro M (2009) Ionic liquids in tribology bacterial. Molecules 14(6):2286–2305

    Google Scholar 

  59. Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15(4):2405–2426

    CAS  Google Scholar 

  60. Mathieu R, Audrey PG, Sandy SZ, Julien BT, Jeremie LC, Mathieu B, Joelle NP, Andreea RS, Masson JF (2013) Imidazolium-based ionic liquid surfaces for biosensing. Anal Chem 5(12):5770–5777

    Google Scholar 

  61. Murray SM, Zimlich TK, Mirjafari A, O’Brien RA, Davis JH, West KN (2013) Thermophysical properties of imidazolium-based lipidic ionic liquids. J Chem Eng Data 58(6):1516–1522

    CAS  Google Scholar 

  62. Gale RJ, Osteryoung RA (1979) Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures. Am Chem Soc Inorg Chem 18(6):1603–1605

    CAS  Google Scholar 

  63. Min GH, Yim T, Lee HY, Huh DH, Lee E, Mun J, Oh SM, Kim YG (2006) Synthesis and properties of ionic liquids: imidazolium tetrafluoroborates with unsaturated side chains. Bull Kor Chem Soc 27(6):847–852

    CAS  Google Scholar 

  64. Aupoix A, Pegot B, Vo-Thanh G (2010) Synthesis of imidazolium and pyridinium-based ionic liquids and applications of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free microwave activation. Tetrahedron 66:1352–1356

    CAS  Google Scholar 

  65. http://www.sigmaaldrich.com

  66. Fukumoto K, Ohno H (2006) Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids. Chem Commun 2006:3081–3083

    Google Scholar 

  67. Luo S, Xu D, Yue H, Wang L, Yang W, Xu Z (2006) Synthesis and properties of novel chiral-amine-functionalized ionic liquids. Tetrahedron Asymmetr 17:2028–2033

    CAS  Google Scholar 

  68. Plaza PGJ, Bhongade BA, Singh G (2008) Synthesis of chiral carbohydrate ionic liquids. Synlett 2008:2973–2976

    Google Scholar 

  69. Pernak J, Feder-Kubis J (2005) Synthesis and properties of chiral ammonium-based ionic liquids. Chem Eur J 11:4441–4449

    CAS  Google Scholar 

  70. Ni B, Garre S, Headley AD (2007) Design and synthesis of fused-ring chiral ionic liquids from amino acid derivatives. Tetrahedron Lett 48:1999–2002

    CAS  Google Scholar 

  71. Pernak J, Goc I, Mirska I (2004) Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem 6(7):323–329

    CAS  Google Scholar 

  72. Pernak J, Sobaszkiewicz K, Foksowicz F (2004) Ionic liquid with symmetrical dialkoxymethly-substituted imidazolium cation. J Chem Eur 10:3479–3485

    CAS  Google Scholar 

  73. a) Pernak J, Syguda A, Mirska I, Pernak A, Nawrot J, Pradzynska A, Griffin S T, Rogers, RD (2007) Choline derivative based ionic liquids. Chem Eur J 13:6817–6827 b) Pernak J, Skrzypczak A, Lota G, Frackowiak E (2007) Synthesis and properties of trigeminal tricationic ionic liquids. Chem Eur J 13(11):3106–3112

    Google Scholar 

  74. Pernak J, Feder-Kubis J (2005) Synthesis and properties of chiral ammonium-based ionic liquids. Chem Eur J 11(15):4441–4449

    CAS  Google Scholar 

  75. Docherty K, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189

    CAS  Google Scholar 

  76. Pernak J, Chwala P (2003) Synthesis and anti-microbial activities of choline like quaternary ammonium chlorides. Chem Eur J 38:1035–1042

    CAS  Google Scholar 

  77. Louise C, Chau PKW, Earle MJ, Gilea MA, Gilmore BF, Gorman SP, McCann MT, Seddon KR (2009) Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem 11:492–497

    Google Scholar 

  78. Busetti A, Crawford DE, Earle MJ, Gilea MA, Gilmore BF, Gorman SP, Laverty G, Lowry AF, McLaughlin M, Seddon KR (2010) Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chem 12:420–425

    CAS  Google Scholar 

  79. Sheldon RA, Lau RM, Sorgedrager MJ, Rantwijk FV, Seddon KR (2002) Biocatalysis in ionic liquids. Green Chem 4:147–151

    CAS  Google Scholar 

  80. Krishna SH (2002) Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Adv 20:239–267

    Google Scholar 

  81. Cull SG, Holdbrey JD, Mora V, Seddon KR, Lye GJ (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operation. Biotecnol Bioeng 69(2):227–233

    CAS  Google Scholar 

  82. Erbeldinger M, Mesiano M, Russel AJ (2000) Enzymatic catalyst of formation of 2-aspartame in ionic liquid-An alternative to enzymatic catalyst in organic solvents. Biotechnol Prog 16:1129–1131

    CAS  Google Scholar 

  83. Kim TY, Yeon JH, Kim SR, Kim CY, Shim JP, Suh KS (2011) Shape-controlled synthesis of silver crystals mediated by imidazolium-based ionic liquids. Phys Chem Chem Phys 13:16138–16141

    CAS  Google Scholar 

  84. Zhao C, MacFarlane DR, Bond AM (2009) Modified thermodynamics in ionic liquids for controlled electrocrystallization of nanocubes, nanowires, and crystalline thin films of silver-tetracyanoquinodimethane. J Am Chem Soc 131(44):16195–16205

    CAS  Google Scholar 

  85. Zhao C, MacFarlane DR, Bond AM (2009) Modified thermodynamics in ionic liquids for controlled electrocrystallization of nanocubes, nanowires and crystalline thin films of silver-tetracyanoquinodimethane. J Am Chem Soc 131:16195–16205

    CAS  Google Scholar 

  86. Zhao C, Bond AM (2009) Photoinduced oxidation of water to oxygen in ionic liquids BMIMBF4 as a counter reaction for fabrication of exceptionally long semiconducting polymeric AgTCNQ nanowires. J Am Chem Soc 131:4279–4287

    CAS  Google Scholar 

  87. Abedin SZE, Endres F (2009) Electrodeposition of nanocrystalline silver films and nanowires from the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethyl sulfonate. Electrochim Acta 54(24):5673–5677

    Google Scholar 

  88. Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS (2009) Ionic-liquid-assisted formation of silver nanowires. Angew Chem Int Ed Engl 48(21):3806–3809

    CAS  Google Scholar 

  89. Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS (2009) Ionic-Liquid-Assisted Formation of Silver Nanowires. Angew Chem Int Ed 48:3806–3809

    CAS  Google Scholar 

  90. Nagano K, Nishizawa T, Umeda Y, Kasai T, Noguchi T, Gotoh K, Ikawa N, Eitaki Y, Kawasumi Y, Yamauchi T, Arito H, Fukushima S (2011) Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. J Occup Health 53(3):175–187

    CAS  Google Scholar 

  91. Zhou Y, Zhang F, Tvingstedt K, Barrau S, Li F, Tian W, Inganaes O (2008) Investigation on polymer anode design for flexible polymer solar cells. Appl Phys Lett 92:233308/1–233308/3

    Google Scholar 

  92. Vollmer A, Feng XL, Wang X, Zhi LJ, Muellen K, Koch N, Rabe JP (2009) Electronic and structural properties of $~$graphene-based transparent and conductive thin film electrodes. Appl Phys A Mater Sci Process 94:1–4

    CAS  Google Scholar 

  93. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Green processing using ionic liquids and CO2. Nature 399(6731):28–29

    Google Scholar 

  94. Sergei VD, Richard AB (2003) Recent advances in applications of room temperature ionic liquid/supercritical CO2 systems. Angew Chem Int Edit 42(2):148

    Google Scholar 

  95. Xu JM, Liu BK, Wu WB, Qian C, Wu Q, Lin X (2006) Synthesis of aryl azides: a probe reaction to study the synergetic action of ultrasounds and ionic liquids. J Org Chem 71:3991–3993

    CAS  Google Scholar 

  96. Pechmann HV (1884) Neue bildungsweise der cumarine synthesis des daphnetins. berichte der deutschen chemischen gesellschaft 17(1):929–936

    Google Scholar 

  97. Upadhyay KK, Mishra RK, Kumar A (2008) A convenient synthesis of some coumarin derivatives using SnCl2.2H2O as catalyst. Catal Lett 121:118–120

    CAS  Google Scholar 

  98. Kokare ND, Sangshetti JN, Shinde DB (2007) Oxalic acid catalyzed solvent-free one pot synthesis of coumarins. Chin Chem Lett 18(11):1309–1312

    CAS  Google Scholar 

  99. Prajapati D, Gohain M (2007) Iodine a simple, effective and inexpensive catalyst for the synthesis of substituted. Coumarins Catal Lett 119(1-2):59–63

    CAS  Google Scholar 

  100. Potdar MK, Rasakar MS, Mohile SS, Salunkhe MM (2005) Convenient and efficient protocols for coumarin synthesis via Pechmann condensation in neutral ionic liquids. J Mol Catal A Chem 235(1–2):249–252

    CAS  Google Scholar 

  101. Potdar MK, Mohile SS, Salunkhe MM (2001) Coumarin syntheses via Pechmann condensation in Lewis acidic chloroaluminate ionic liquid. Tetrahedron Lett 42:9285–9287

    CAS  Google Scholar 

  102. Gu Y, Zhang J, Duan Z, Deng Y (2005) Pachman reaction in non-chloroaluminate acidic ionic liquids solvent-free conditions. Adv Synth Catal 347:512–516

    CAS  Google Scholar 

  103. Dong F, Jian C, Kai G, Qunrong S, Zuliang L (2008) Synthesis of coumarins via pechmann reaction in water catalyzed by acyclic acidic ionic liquids. Catal Lett 121:255–259

    Google Scholar 

  104. Sing V, Kaur S, Sapehiyia V, Sigh J, Kad GL (2005) Microwave accelerated preparation of [bmim][HSO4] ionic liquid: an acid catalyst for improved synthesis of coumarins. Catal Commun 6(1):57–60

    Google Scholar 

  105. Shaabani A, Rahmati A, Farhangi E, Rezayan AH (2007) One-step synthesis of 3,4-dihydrobenzimidazo[2,1-b]quinazolin-1(2 H)-ones in an ionic liquid. Monatsh Chemie 138(6):615–618

    CAS  Google Scholar 

  106. Khan MS, Siddiqui SA, Rafi MS, Siddiqui A, Goswami U, Venkatraman K, Muhammad S, Khan I (2008) Antibacterial activity of synthesized 2,4,5-trisubstituted imidazole derivatives. Chem Biol Drug Des 72(3):197–204

    CAS  Google Scholar 

  107. Hasaninejad A, Zare A, Shekouhy M, Javad AR (2010) Catalyst-free one-pot four component synthesis of polysubstituted imidazoles in neutral ionic liquid 1-butyl-3-methylimidazolium bromide. J Comb Chem 12(6):844–849

    CAS  Google Scholar 

  108. Peng J, Deng Y (2001) Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Lett 42:5917–5919

    CAS  Google Scholar 

  109. Yanlong G (2012) Multicomponent reactions in unconventional solvents: state of the art. Green Chem 14:2091–2128

    Google Scholar 

  110. Wang XS, Wu JR, Zhou J, Zhang MM (2011) A green method for the synthesis of thiochromene derivatives in ionic liquids. J Heterocycl Chem 48:1056–1060

    CAS  Google Scholar 

  111. Heravi MRP, Fakhr F (2011) Ultrasound-promoted synthesis of 2-amino-6-(arylthio)-4-arylpyridine-3,5-dicarbonitriles using ZrOCl2·8H2O/NaNH2 as the catalyst in the ionic liquid [bmim]BF4 at room temperature. Tetrahedron Lett 52:6779–6782

    Google Scholar 

  112. Wan Y, Yuan R, Zhang FR, Pang LL, Ma R, Yue CH, Lin W, Yin W, Bo RC, Wu H (2011) One-pot synthesis of N2-substituted 2-amino-4-aryl-5,6,7,8-tetrahydroquinoline-3-carbonitrile in basic ionic liquid [bmim]OH. Synth Commun 41(20):2997–3015

    CAS  Google Scholar 

  113. Khurana JM, Nand B, Kumar S (2011) Rapid synthesis of polyfunctionalized pyrano[2,3-c]pyrazoles via multicomponent condensation in room-temperature ionic liquids. Synth Commun 41(3):405–410

    CAS  Google Scholar 

  114. Shekouhy M, Hasaninejad A (2012) Ultrasound-promoted catalyst-free one-pot four component synthesis of 2 H-indazolo[2,1-b]phthalazine-triones in neutral ionic liquid 1-butyl-3-methylimidazolium bromide. Ultrason Sonochem 19(2):307–313

    CAS  Google Scholar 

  115. Dabiri M, Salehi P, Bahramnejad M (2010) Ecofriendly and efficient one-pot procedure for the synthesis of quinazoline derivatives catalyzed by an acidic ionic liquid under aerobic oxidation conditions. Synth Commun 40(21):3214–3225

    CAS  Google Scholar 

  116. Roy SR, Jadhavar PS, Seth K, Sharma KK, Chakraborti AK (2011) Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and thiones. Synthesis 2011:2261–2267

    Google Scholar 

  117. Fang D, Gong K, Zhang DZ, Liu ZL (2009) One-pot, three-component mannich-type reaction catalyzed by functionalized ionic liquid. Monatsh Chem 140:1325–1329

    CAS  Google Scholar 

  118. Yong FF, Teo YC (2011) Recyclable siloxy serine organocatalyst for the direct asymmetric mannich reactions in ionic liquids. Synth Commun 41(9):1293–1300

    CAS  Google Scholar 

  119. Kumar A, Rao VK (2011) Microwave-assisted and Yb(OTf)3-promoted one-pot multicomponent synthesis of substituted quinolines in ionic liquid. Synlett 2011:2157–2162

    Google Scholar 

  120. Jadhav AH, Chinnappan A, Patil RH, Kostjuk SV, Kim H (2014) Short oligo ethylene glycolic tailor-made ionic liquids as highly efficient and reusable catalyst for one-pot synthesis of 1,5-benzodiazepine derivatives under solvent free condition. Chem Eng J 240:228–234

    CAS  Google Scholar 

  121. Rahman M, Sarkar A, Ghosh M, Majee A, Hajra A (2014) Catalytic application of task specific ionic liquid on the synthesis of benzoquinazolinone derivatives by a multicomponent reaction. Tetrahedron Lett 55(1):235–239

    CAS  Google Scholar 

  122. Shirini F, Yahyazadeh A, Mohammadi K (2013) One-pot synthesis of various xanthene derivatives using ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and reusable catalyst under solvent-free conditions. Chin Chem Lett (In Press, Corrected Proof Available online)

    Google Scholar 

  123. Zare A, Abi F, Moosavi-Zare AR, Beyzavi MH, Zolfigol MA (2013) Synthesis, characterization and application of ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient catalyst for the preparation of hexahydroquinolines. J Mol Liq 178:113–121

    CAS  Google Scholar 

  124. Silarska E, Trzeciak AM, Pernak J, Skrzypczak A (2013) [IL]2[PdCl4] complexes (IL = imidazolium cation) as efficient catalysts for Suzuki-Miyaura cross-coupling of aryl bromides and aryl chlorides. Appl Catal A Gen 466:216–223

    CAS  Google Scholar 

  125. Karthikeyan P, Aswar SA, Muskawar PN, Bhagat PR, Kumar SS (2013) Development and efficient 1-glycyl-3-methyl imidazolium chloride-copper(II) complex catalyzed highly enantioselective synthesis of 3, 4-dihydropyrimidin-2(1 H)-ones. J Organomet Chem 723:154–162

    CAS  Google Scholar 

  126. Kalkhambkar RG, Laali KK (2012) Pd(OAc)2 catalyzed synthesis of 2-aryl- and 2-heteroaryl-benzoxazoles and benzothiazoles in imidazolium ionic liquids (ILs) without additives and with recycling/reuse of the IL. Tetrahedron Lett 53(32):4212–4215

    CAS  Google Scholar 

  127. Zolfigol MA, Khakyzadeh V, Moosavi-Zare AR, Zare A, Azimi SB, Asgari Z, Hasaninejad A (2012) Preparation of various xanthene derivatives over sulfonic acid functionalized imidazolium salts (SAFIS) as novel, highly efficient and reusable catalysts. CR Chim 15(8):719–736

    CAS  Google Scholar 

  128. Cao Q, Guo X, Yao S, Guan J, Wang X, Mu X, Zhang D (2011) Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic liquids with and without a catalyst. Carbohydr Res 346(7):956–959

    CAS  Google Scholar 

  129. Wu B, Wen J, Zhang J, Li J, Xiang YZ, Yu XQ (2009) One-pot Van Leusen synthesis of 4,5-disubstituted oxazoles in ionic liquids. Synlett 3(137):500–504

    Google Scholar 

  130. Wakamatsu H, Saito Y, Masubuchi M, Fujita R (2008) Synthesis of imidazolium-tagged ruthenium carbene complex: remarkable activity and reusability in regard to olefin metathesis in ionic liquids. Synlett 2008:1805–1808

    Google Scholar 

  131. Judeh ZMA, Ching CB, Bu J, McCluskey A (2002) The first Bischler-Napieralski cyclization in a room temperature ionic liquid. Tetrahedron Lett 43:5089–5091

    CAS  Google Scholar 

  132. Yavari I, Kowsari E (2008) Task-specific basic ionic liquid: a reusable and green catalyst for one-pot synthesis of highly functionalized pyrroles in aqueous media. Synlett 2008:897–899

    Google Scholar 

  133. Shi F, Peng J, Deng Y (2003) Highly efficient ionic liquid-mediated palladium complex catalyst system for the oxidative carbonylation of amines. J Catal 219:372–375

    CAS  Google Scholar 

  134. Guo S, Du Z, Zhang S, Li D, Li Z, Deng Y (2006) Clean Beckmann rearrangement of cyclohexanone oxime in caprolactam-based bronsted acidic ionic liquids. Green Chem 8(3):296–300

    CAS  Google Scholar 

  135. Peng J, Deng Y (2001) Catalytic Beckmann rearrangement of ketoximes in ionic Liquids. Tetrahedron Lett 42:403–405

    CAS  Google Scholar 

  136. Verevkin SP, Emel’yanenko VN, Toktonov AV, Goodrich P, Hardacre C (2009) Thermochemistry of ionic liquid-catalyzed reactions: theoretical and experimental study of the Beckmann rearrangement—kinetic or thermodynamic control? Ind Eng Chem Res 48(22):9809–9816

    Google Scholar 

  137. Qiao K, Deng Y (2002) Hydroesterification of tert-butyl alcohol in room temperature ionic liquids. New J Chem 26:667–670

    CAS  Google Scholar 

  138. Handy ST (2006) Grignard reactions in imidazolium ionic liquids. J Org Chem 71:4659–4662

    CAS  Google Scholar 

  139. Morrissey S, Beadham I, Gathergood N (2009) Selective hydrogenation of trans-cinnamaldehyde and hydrogenolysis-free hydrogenation of benzyl cinnamate in imidazolium ILs. Green Chem 11:466–474

    CAS  Google Scholar 

  140. Bhosale RS, Sarda SR, Giram RP, Raut DS, Parve SP, Ardhapure SS, Pawar RP (2009) Ionic liquid promoted expeditious synthesis of flavones. J Iran Chem Soc 6(3):519–522

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra P. Pawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Dake, S. et al. (2014). Imidazolium Ionic Liquids: An Environment-Friendly Medium for Various Applications. In: Ameta, K., Dandia, A. (eds) Green Chemistry: Synthesis of Bioactive Heterocycles. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1850-0_7

Download citation

Publish with us

Policies and ethics