Skip to main content

Antifungal Activity of Agave Species from Gujarat, India

  • Chapter
  • First Online:
Microbial Diversity and Biotechnology in Food Security

Abstract

In the present investigation, crude extracts of five different species of Agave (Agave americana, Agave ferox, Agave montana, Agave scabra and Agave marginata) have been examined against six plant pathogenic fungi, viz. Macrophomina phaseolina, Alternaria porii, Aspergillus awamorii, Aspergillus niger, Fusarium udum and Fusarium solani using media poisoning method. The percent inhibition of hyphal growth was measured after the seventh day of incubation. Vast variations were observed in their activities on different pathogens. Amongst the fungi studied, the highest inhibition (more than 50 %) of hyphal growth was observed for M. phaseolina by all the extracts. These data suggest that the different Agave species have potential as antifungal agents with a broad range of activity. The antifungal compound isolated from these plants can be used as possible ecofriendly plant-based fungicides to control plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Khalik SM, Miyase T, Melek FR (2002) New steroidal saponins from Agave lophantha Schiede and their pharmacological evaluation. Pharmazie 57:562–566

    CAS  PubMed  Google Scholar 

  • Afrose S, Hossain MS, Maki T, Tsujii H (2009) Karaya root saponin exerts a hypocholesterolemic response in rats fed a high-cholesterol diet. Nutr Res 29(5):350–354

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (1997) Plant pathology, 4th edn. Academic Press, New York

    Google Scholar 

  • Al-Askar AA, Rashad YM (2010) Efficacy of some plant extracts against Rhizoctonia solani on pea. J Plant Prot Res 50:269–242

    Article  Google Scholar 

  • Al-Burtamani KS, Majekodunmi OF, Marwah RG, Onifade AK, Al-Saidi SH (2005) Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman. J EthnoPharmacol 96:107–112

    Article  CAS  PubMed  Google Scholar 

  • Ark PA, Thompson JP (1959) Control of certain diseases of plants with antibiotics from garlic (Allium sativum L.). Plant Dis Rep 43:276

    Google Scholar 

  • Begum N, Sharma B, Pandey RS (2010) Toxicity potential and anti AchE activity of some plant extracts in Musca Domestica. J Biofertil Biopestici 2:108. doi:10.4172/2155-6202.1000108

    Google Scholar 

  • Behboudi S, Morein B, Villacres-Eriksson M (1999) Quillaja saponin formulations that stimulate proinflammatory cytokins elicit a potent acquired cell-mediated immunity. Scand J Immunol 50:371–377

    Article  CAS  PubMed  Google Scholar 

  • Blakeman JP, Fokkema NJ (1982) Potential for biocontrol of plant diseases on the phylloplane. Annu Rev Phytopathol 20:167–192

    Article  Google Scholar 

  • Bobbarala V, Chadaram RK, Vadlapudi V, Katikala PK (2009) Medicinal plants as alternative biocontrol agents in the control of seed borne pathogen Macrophomina phaseolina. J Pharm Res 2:1045–1048

    Google Scholar 

  • Cano JH, Volpato G (2004) Herbal mixtures in the traditional medicine of eastern Cuba. J Ethnopharmacol 90:293–316

    Article  PubMed  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366:1987–1998

    Article  PubMed Central  PubMed  Google Scholar 

  • Chattopadhyay DK, Maiti AP, Kundu MS, Chakraborty R, Bhadra SC, Mandal AB (2001) Antimicrobial activity of Alstonia macrophylla: a folklore of bay islands. J Ethnopharmacol 77:49–55

    Article  CAS  PubMed  Google Scholar 

  • Chetan AC, Patel RM, Dakhara SL, Jariwala JK (2010) In vitro cytotoxicity study of Agave americana, Strychnos nux-vomica and Areca catechu extract using MCF-7 cell line. J Adv Pharm Tech Res 1:245–252

    Google Scholar 

  • Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E (2010) Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 5:321–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhingra CD, Sinclair JB (1973) Variation among the isolates of Macrophomina phaseolina (Rhizoctonia bataticola) from different regions. Phytopathol Z 76:200–204

    Article  Google Scholar 

  • Dimoglo AS, Choban IN, Bersuker IB, Kintya PK, Balashova NN (1985) Structure-activity correlations for the antioxidant and antifungal properties of steroid glycosides. Bioorg Khim 11:408–413

    CAS  PubMed  Google Scholar 

  • Dini I, Schettino O, Simioli T, Dini A (2001) Studies on the constituents of Chenopodium quinoa seeds: isolation and characterization of new triterpene saponins. J Agric Food Chem 49:741–746

    Article  CAS  PubMed  Google Scholar 

  • Elad Y (1993) Microbial suppression of infection by foliar plant pathogens. IOBC Bull 16:3–7

    Google Scholar 

  • El-Mougy NS, Alhabeb RS (2009) Inhibitory effects of powdered caraway and peppermint extracts on pea root rot under greenhouse conditions. J Plant Protec Res 49:93–96

    Google Scholar 

  • Fawzi EM, Khalil AA, Afifi AF (2009) Antifungal effect of some plant extracts on Alternaria alternata and Fusarium oxysporum. Afr J Biotechnol 8:2590–2597

    Google Scholar 

  • Friedman M (2002) Tomato glycoalkaloids: role in the plant and the diet. J Agric Food Chem 50:751–5780

    Article  Google Scholar 

  • Gentry HS (1982) Agaves of continental North America. The University of Arizona Press, Tucson

    Google Scholar 

  • Guleria S, Kumar A (2006a) Azadirachta indica leaf extract induces resistance in sesame against Alternaria leaf spot disease. J Cell Mol Biol 5:81–86

    Google Scholar 

  • Guleria S, Kumar A (2006b) Antifungal activity of some Himalayan medicinal plants using direct bioautography. J Cell Mol Biol 5:95–98

    Google Scholar 

  • Guleria S, Kumar A (2009) Antifungal activity of Agave americana leaf extract against Alternaria brassicae, causal agent of Alternaria blight of Indian mustard (Brassica juncea). Arch Phytopathol Plant Protec 42:370–375

    Article  CAS  Google Scholar 

  • Guleria S, Sohal BS, Mann APS (2005) Salicylic acid treatment and/or Erysiphe polygoni inoculation on phenylalanine ammonia-lyase and peroxidase content and accumulation of phenolics in pea leaves. J Veg Sci 11:71–79

    Article  Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3:186–188

    Google Scholar 

  • Hammuel C, Yebpella GG, Shallangwa GA, Magomya AM, Agbaji AS (2011) Phytochemical and antimicrobial screening of methanol and aqueous extracts of Agave sisalana. Acta Poloniae Pharmaceut Drug Res 68:535–539

    CAS  Google Scholar 

  • Haridas V, Arntzen CJ, Gutterman JU (2001) Avicins, a family of triterpenoid saponins from Acacia victoriae (Bentham), inhibit activation of nuclear factor-kappa B by inhibiting both its nuclear localization and ability to bind DNA. Proc Nat Acad Sci U S A 98:11557–11562

    Article  CAS  Google Scholar 

  • Hassan SM, Haq AU, Byrd JA, Berhow MA, Cartwright AL, Bailey CA (2010) Haemolytic and antimicrobial activities of saponin-rich extracts from guar meal. Food Chem 119:600–605

    Article  CAS  Google Scholar 

  • Hostettmann KA, Marston A (1995) Saponins. Chemistry and pharmacology of natural products. Cambridge Univesity Press, Cambridge, pp. 239–284

    Google Scholar 

  • Huang HC, Chou CH (2005) Impact of plant disease biocontrol and allelopathy on biodiversity and agricultural sustainability. Plant Pathol Bull 14:1–12

    Google Scholar 

  • Ilondu EM (2011) Evaluation of some aqueous plant extracts used in the control of pawpaw fruit (Carica papaya L.) rot fungi. J Appl Biosci 37:2419–2424

    Google Scholar 

  • Imai S, Fujioka S, Murata E, Goto M, Kawasaki T, Yamauchi T (1967) Bioassay of crude drugs and oriental crude drug preparations. XXII. Search for biologically active plant ingredients by means of antimicrobial tests. 4. Antifungal activity of dioscin and related compounds. Takeda Kenkyusho Nenpo 26:76–83

    CAS  Google Scholar 

  • Ito S, Eto T, Tanaka S, Yamauchi N, Takahara H, Ikeda T (2004) Tomatidine and lycotetraose, hydrolysis products of alpha-tomatine by Fusarium oxysporum var. tomatinase, suppress induced defense responses in tomato cells. FEBS Lett 571:31–34

    Article  CAS  PubMed  Google Scholar 

  • Jin JM, Liu XK, Yang CR (2002) New steroidal saponin from fermented leaves of Agave americana. Acta Bot Yunnanica 24:539–542

    CAS  Google Scholar 

  • Joseph B, Dar MA, Kumar V (2008) Bioefficacy of plant extracts to control Fusarium solani f. Sp. melongenae incitant of brinjal wilt. Global J Biotechnol Biochem 3:56–59

    Google Scholar 

  • Keukens EAJ, de Vrihe T, van den Boom C (1995) Molecular basis of glycoalkaloid induced membrane disruption. Biochem Biophys Acta 1240:216–228

    Article  PubMed  Google Scholar 

  • Khallil A-RM (2001) Phytofungitoxic properties in the aqueous extracts of some plants. Pak J Biol Sci 4:392–394

    Article  Google Scholar 

  • Khan MTJ, Ahmad K, Alvi MN, Noor-ul-Amin, Mansoor B, Saeed MA, Khan FZ, Jamshaid M (2010) Antibacterial and irritant activities of organic solvent extracts of Agave americana Linn., Albizzia lebbek Benth. Achyranthes aspera Linn. and Abutilon indicum Linn—A preliminary investigation. Pak J Zool 42:93–97

    Google Scholar 

  • Khan SN (2007) Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopath 5(2):111–118

    Google Scholar 

  • Kiran K, Linguraju S, Adiver S (2006) Effect of plant extract on Sclerotium rolfsii, the incitant of stem rot of ground nut. J Mycol Pl Pathol 36:77–79

    Google Scholar 

  • Kozukue N, Han J, Lee K, Friedman M (2004) Dehydrotomatineand α-tomatine content in tomato fruits and vegetative plant tissues. J Agric Food Chem 52:2079–2083

    Article  CAS  PubMed  Google Scholar 

  • Lyon GD, Reglinski T, Newton AC (1995) Novel disease control compounds: the potential to ‘immunize’ plants against infection. Plant Pathol 44:407–427

    Article  CAS  Google Scholar 

  • Mazid S, Rajkhowa RC, Kalita JC (2011) A review on the use of biopesticides in insect pest management. Inter J of Sci Adv Technol 1:169–178

    Google Scholar 

  • Mekbib SB, Regnier TJC, Korsten L (2007) Control of Penicillium digitatum on citrus fruit using two plant extracts and study of their mode of action. Phytoparasitica 35(3):264–276

    Article  Google Scholar 

  • Miyakoshi M, Tamura Y, Masuda H, Misutani K, Tanaka O, Ikeda T, Ohtani K, Kasai R, Kazuo Y (2000) Antiyeast steroidal saponins from Yucca schidigera (Mohave Yucca), a new anti-food-deteriorating agent. J Nat Prod 63:332–338

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Boil Rev 63:708–724

    CAS  Google Scholar 

  • Newton SM, Lau C, Gurcha SS, Besra GS, Wright CW (2002) The evaluation of forty-three plant species for in vitro antimycobacterial activities: Isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. J Ethnopharmacol 79:57–67

    Article  PubMed  Google Scholar 

  • Oh S, Kinjo J, Shii Y, Ikeda T, Nohara T, Ahn K, Kim J, Lee H (2000) Effects of triterpenoids from Pueraria lobata on immunohemolysis: β-D-glucuronic acid plays an active role in anticomplementary activity in vitro. Planta Med 66:506–510

    Article  CAS  PubMed  Google Scholar 

  • Osbourn A, Bowyer P, Lunness P, Clarke B, Daniels M (1995) Fungal pathogens of oat roots and tomato leaves employ closely related enzymes to the detoxify different host plant saponins. Mol Plant Microbe Interact 8:971–978

    Article  CAS  PubMed  Google Scholar 

  • Pandey JC, Kumar R, Gupta RC (1992) Possibility of biological control of rhizome rot of ginger by different antagonists. Progressive Hortic 24:227–232

    Google Scholar 

  • Prithiviraj B, Singh UP (1995) Biological control of plant pathogens: a key to a serene agro-ecosystem. J Rec Adv Appl Sci 10:99–100

    Google Scholar 

  • Ragupathi G, Damani P, Deng K, Adams MM, Hang J, George C, Livingston PO, Gin DY (2010) Preclinical evaluation of the synthetic adjuvant SQS-21 and its constituent isomeric saponins. Vaccine 28:4260–4267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rojas R, Bustamante B, Bauer J, Fernandez I, Alban J, Lock O (2003) Antimicrobial activity of selected Peruvian medicinal plants. J Ethnopharmacol 88:199–204

    Article  PubMed  Google Scholar 

  • Sahayaraj K, Namasivayam SKR, Rathi JM (2011) Compatibility of entomopathogenic fungi with extracts of plants and commercial botanicals. Afr J Biotechnol 10:933–938

    Google Scholar 

  • Sahu NP, Banerjee S, Mondal NB, Mandal D (2008) Steroidal saponins. Prog Chem Organ Nat Prod 89:45–141

    CAS  Google Scholar 

  • Sanchez E, Heredia N, Garcıa S (2005) Inhibition of growth and mycotoxin production of Aspergillus flavus and Aspergillus parasiticus by extracts of Agave species. Int J Food Microbiol 98:271–279

    Article  CAS  PubMed  Google Scholar 

  • Santos JDG, Branco A, Silva AF, Pinheiro CSR, Neto AG, Uetanabaro APT, Queiroz SROD, Osuna JTA (2009) Antimicrobial activity of Agave sisalana. Afr J Biotechnol 8(22):6181–6184

    Google Scholar 

  • Shukla S, Mehta P, Mehta A, Vyas SP, Bajpai VK (2011) Preliminary phytochemical and antifungal screening of various organic extracts of Caesalpinia bonducella seeds. Roman Biotechnol Lett 16:6384–6389

    CAS  Google Scholar 

  • Simons V, Morrissey JP, Latijnhouwers M, Csukai M, Cleaver A, Yarrow C, Osbourn A (2006) Dual effects of plant steroidal alkaloids on Saccharomyces cerevisiae. Antimicrob Agents Chemother 50:2732–2740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sparg SG, Light ME, Staden JV (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  CAS  PubMed  Google Scholar 

  • Verastegui MA, Sanchez-Garcıa CA, Heredia NL, García-Alvarado JS (1996) Antimicrobial activity of three major plants of the Chihuahuan desert. J Ethnopharmacol 52:175–177

    Article  CAS  PubMed  Google Scholar 

  • Verastegui A, Verde J, Garcıa S, Heredia N, Oranday A, Rivas C (2008) Species of Agave with antimicrobial activity against selected pathogenic bacteria and fungi. World J Microbiol Biotechnol 24:1249–1252

    Article  Google Scholar 

  • Williams RJ, Heymann DL (1998) Contamination of antibiotic resistance. Science 279:1153–1154

    Article  CAS  PubMed  Google Scholar 

  • Wilson M (1997) Biocontrol of aerial plant diseases in agriculture and horticulture: Current approaches and future prospects. J Ind Microbiol Biotechnol 19:188–191

    Article  CAS  Google Scholar 

  • Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996–997

    Article  CAS  PubMed  Google Scholar 

  • Wolters B (1966) Antimicrobial activity of plant steroids and triterpenes. Planta Med 14:392–401

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Pesticide applications-Threat to ecosystems. J Hum Ecol 32(1):37–45

    Google Scholar 

  • Yang C, Zhang Y, Jacob M, Khan S, Zhang YJ, Xing-Cong L (2006) Antifungal activity of C-27 steroidal saponins. Antimicrob Agents Chemother 50:1710–1714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zadoks JC (1993) Antipodes on crop protection in sustainable agriculture. In: Corey S, Dall D, Milne W (eds) Pest control and sustainable agriculture. The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia, pp. 3–12

    Google Scholar 

  • Zwane PE, Masarirambi MT, Magagula NT, Dlamini AM, Bhebhe E (2011) Exploitation of Agave americana L. plant for food security in Swaziland. Am J Food Nutr 1:82–88

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Vimal Research Society for Agro-Biotech and Cosmic Powers and the Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Department of Biosciences, Rajkot, Gujarat for providing research facilities, and the University Grants Commission (UGC), Delhi (India) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vrinda S. Thaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Maharshi, A., Thaker, V. (2014). Antifungal Activity of Agave Species from Gujarat, India. In: Kharwar, R., Upadhyay, R., Dubey, N., Raghuwanshi, R. (eds) Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1801-2_37

Download citation

Publish with us

Policies and ethics