Skip to main content

Targeting of Metabolic Pathways for Genetic Engineering to Combat Abiotic Stress Tolerance in Crop Plants

  • Chapter
  • First Online:
Approaches to Plant Stress and their Management

Abstract

Abiotic stress is a serious threat to sustainable agriculture. Plant adaptation to suboptimal environmental conditions is controlled by cascades of molecular networks involved in stress perception, signal transduction, activation of new biochemical pathways, and repression of others. Protective metabolic adaptations alter physiological homeostatic of the whole plant. Use of modern molecular biology tools for elucidating abiotic stress tolerance relies on expression of specific stress-related gene and gene encoding enzymes present in biosynthetic pathways of functional and structural metabolites. Paramount among the mechanisms are reactive oxygen species scavenging, maintenance of ion uptake and water balance, and accumulation of compatible solutes such as betaines, proline, and alcohol sugars. Instead of single gene manipulation approach, targeting the regulatory machinery involving transcription factors has emerged as new potent tool for developing stress-tolerant transgenic crops. Under this chapter we highlight recent advances to our knowledge that emphasize the development of transgenic crops with improved stress tolerance by targeting different genes of various metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Guenzi AC, Martin B et al (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med 23:473–479

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA et al (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A et al (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Bordas M, Montesinos C, Debauza M et al (1997) Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res 6:41–50

    Article  PubMed  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci 101:9909–9914

    Article  PubMed  CAS  Google Scholar 

  • Chauhan S, Forsthoefel N, Ran Y et al (2000) Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J 24:511–522

    Article  PubMed  CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resistance to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13:95–108

    Article  PubMed  CAS  Google Scholar 

  • Csonka L (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbio Rev 53:121–147

    CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Eriksson SK, Kutzer M, Procek J et al (2011) Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell 23:2391–2404

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155

    Article  PubMed  CAS  Google Scholar 

  • Galau GA, Bijaisoradat N, Hughes DW (1987) Accumulation kinetics of cotton late embryogenesis-abundant (Lea) mRNAs and storage protein mRNAs: coordinate regulation during embryogenesis and role of abscisic acid. Dev Biol 123:198–212

    Article  PubMed  CAS  Google Scholar 

  • Garg A, Kim J, Owens T et al (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S et al (2001) Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP et al (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Gisbert C, Rus AM, Boları’n MC et al (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    Article  PubMed  CAS  Google Scholar 

  • Goddijn O, Verwoerd TC, Voogd E et al (1997) Inhibition of trehalase activity enhances inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190

    Article  PubMed  CAS  Google Scholar 

  • Hamada A, Shono M, Xia T et al (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42

    Article  PubMed  CAS  Google Scholar 

  • Hamilton EW III, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA, Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23:79–103

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the postgenome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Hirt H (1997) Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci 2:11–15

    Article  Google Scholar 

  • Holmström K-O, Mäntylä E, Welin B et al (1996) Drought tolerance in tobacco. Nature 379:683–684

    Article  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z et al (2000) Removal of feedback inhibition of 1 pyrroline-5-carboxylate synthetase (P5CS) results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Dai M, Yao J et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Jaradat MR, Wu W et al (2007) Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. Plant J 50:414–428

    Article  PubMed  CAS  Google Scholar 

  • Ikuta S, Mamura S, Misaki H et al (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82:1741–1749

    PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377–403

    CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K et al (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  PubMed  CAS  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL et al (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ et al (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Jang I-C, Oh S-J, Seo J-S et al (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  PubMed  CAS  Google Scholar 

  • Jeong JS, Kim YS, Baek KH et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K et al (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y et al (2006) Tachibana, improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83

    Article  CAS  Google Scholar 

  • Konstantinova T, Parvanova D, Atanassov A et al (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    Article  CAS  Google Scholar 

  • Le Martret B, Poage M, Shiel K et al (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  Google Scholar 

  • Lee YP, Baek K-H, Lee H-S et al (2010) Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61:2499–2506

    Article  PubMed  CAS  Google Scholar 

  • Mani S, van de Cotte B, van Montagu M et al (2002) Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol 128:73–83

    Article  PubMed  CAS  Google Scholar 

  • McCue K, Hanson A (1990) Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8:358–362

    Article  CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    Article  PubMed  CAS  Google Scholar 

  • McNeil S, Rhodes D, Russell B et al (2000) Metabolic model identifies key constraints on an engineered glycine betaine synthetic pathway in tobacco. Plant Physiol 124:153–162

    Article  PubMed  CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Ziemak MJ et al (2001) Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc Natl Acad Sci 98:10001–10005

    Article  PubMed  CAS  Google Scholar 

  • Mundy J, Chua NH (1988) Abscisic acid and water stress induce the expression of a novel rice gene. EMBO J 7:2279–2286

    PubMed  CAS  Google Scholar 

  • Nanjo T, Fujita M, Seki M et al (2003) Toxicity of free proline revealed in an Arabidopsis T-DNA tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol 44:541–548

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci 104:16450–16455

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, McNeil SD, Ziemak MJ et al (2000) Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway. Metab Eng 2:300–311

    Article  PubMed  CAS  Google Scholar 

  • Nyyssola A, Kerovuo J, Kaukinen P et al (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196–22201

    Article  PubMed  CAS  Google Scholar 

  • Oscar J, Goddijn M, van Kees D (1999) Trehalose metabolism in plants. Trends Plant Sci 4(8):315–319

    Article  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A et al (2004) Genetic engineering of glycine betaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Ebstamp MJM, Paul MJ et al (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N et al (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Biochem 37:313–317

    Article  CAS  Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  PubMed  CAS  Google Scholar 

  • Rus AM, MT EËœ o, Gisbert C, Garcia-Sogo B et al (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na + selectivity under salt stress. Plant Cell Environ 24:875–880

    Article  CAS  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin–proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Mulet JM, Rios G et al (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C et al (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM et al (2002) Role of SOS1 as a plasma membrane Na+/H+ antiporter that controls long distance Na+ transport in plant. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ et al (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotech 21:81–85

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997a) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997b) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7:161–167

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Shujun Y, Barbara V, Jiangxin W et al (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3(3):469–490

    Article  Google Scholar 

  • Stein H, Honig A, Miller G et al (2011) Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Sci 181:140–150

    Article  PubMed  CAS  Google Scholar 

  • Suarez R, Calderon C, Iturriaga G (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci 49:1791–1799

    Article  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M et al (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Lia X, Palmgrenb MG (1999) Energization of plant cell membranes by H-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–690

    PubMed  CAS  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S et al (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mt1D gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci 89:2600–2604

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, Sepahi M, Arendall B et al (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801–806

    Article  CAS  Google Scholar 

  • Thompson AJ, Andrews J, Mulholland BJ et al (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143:1905–1917

    Article  PubMed  CAS  Google Scholar 

  • Toäroäk Z, Goloubinoff P, Horvath I et al (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci U S A 98:3098–3103

    Article  Google Scholar 

  • Tony H, Norio M (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  Google Scholar 

  • Veinger L, Diamant S, Buchner J et al (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    Article  PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Biol 42:579–620

    CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan MN, Rai V et al (2005) Genes for direct methylation of glycine provides high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci 102:1318–1323

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hort 560:285–292

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ying J, Kuzma M et al (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li Y, Ji W et al (2011) A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol 168(11):1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Xiao B-Z, Chen X, Xiang C-B et al (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B et al (1996) Expression of a late embryogenesis abundant protein gene HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    PubMed  CAS  Google Scholar 

  • Yang S, Vanderbeld B, Wan J (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Article  PubMed  CAS  Google Scholar 

  • Yeo ET, Kwon HB, Han SE et al (2000) Genetic engineering of drought-resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Mol Cells 10:263–268

    PubMed  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotech 19:765–768

    Article  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci 98:12832–12836

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Chamoli, S., Verma, A.K. (2014). Targeting of Metabolic Pathways for Genetic Engineering to Combat Abiotic Stress Tolerance in Crop Plants. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_2

Download citation

Publish with us

Policies and ethics