Skip to main content

Sperm Vitrification

  • Chapter
  • First Online:
Vitrification in Assisted Reproduction

Abstract

Sperm cryopreservation has immense potential and serves as a powerful tool in the field of assisted reproductive technology. Slow-freezing protocol has been routinely used for cryopreservation of human spermatozoa. This method exerts detrimental effect on spermatozoa that leads to a significant decrease in sperm viability and motility and ultimately in decreased fertilization potential. Whether sperm is cryopreserved as a fertility preservation measure or as a backup for assisted reproduction, the recovery rate of functionally competent spermatozoa is critical. The exact nature of cryodamage stills remains to be elucidated; however, major causes include osmotic imbalance, hypothermic injury, loss of membrane integrity, and extracellular ice crystal formation. Vitrification, an ultrarapid method of cryopreservation, is now considered as a potential alternative to slow freezing. Vitrification involves direct immersion of the cells into liquid nitrogen. It makes use of high concentration of the cryoprotectant thus creating a vitrified glass-like state, thus preventing the formation of ice crystals. The present chapter includes the fundamentals of cryobiology, benefits and limitations of sperm vitrification, and finally its clinical applications and outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spallanzani L. Opusculi di fisica Animale e Vegatabile, Opuculo II. Osservation e spezien interno ai vermicelli spermatici dell’uomo e degli animali 1776. Modeena.

    Google Scholar 

  2. Davenport CB. Effect of chemical & physical agents upon protoplasm. Experimental morphology: part 1. New York: Macmillan Company; 1897.

    Google Scholar 

  3. Parkes AS. Preservation of human spermatozoa at low temperatures. Br Med J. 1945;2:212–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Centola GM, Raubertas RF, Mattox JH. Cryopreservation of human semen. Comparison of cryopreservatives, sources of variability, and prediction of post-thaw survival. J Androl. 1992;13:283–8.

    PubMed  CAS  Google Scholar 

  5. Esteves SC, Sharma RK, Thomas Jr AJ, Agarwal A. Suitability of the hypo-osmotic swelling test for assessing the viability of cryopreserved sperm. Fertil Steril. 1996;66:798–804.

    PubMed  CAS  Google Scholar 

  6. Esteves SC, Sharma RK, Thomas Jr AJ, Agarwal A. Evaluation of acrosomal status and sperm viability in fresh and cryopreserved specimens by the use of fluorescent peanut agglutinin lectin in conjunction with hypo-osmotic swelling test. Int Braz J Urol. 2007;33:364–74.

    Article  PubMed  Google Scholar 

  7. Cross NL, Hanks SE. Effects of cryopreservation on human sperm acrosomes. Hum Reprod. 1991;6(9):1279–83.

    PubMed  CAS  Google Scholar 

  8. de Paula TS, Bertolla RP, Spaine DM, Cunha MA, Schor N, Cedenho AP. Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil Steril. 2006;86:597–600.

    Article  PubMed  Google Scholar 

  9. Gao DY, Ashworth E, Watson PF, Kleinhans FW, Mazur P, Critser JK. Hyperosmotic tolerance of human spermatozoa: separate effects of glycerol, sodium chloride, and sucrose on spermolysis. Biol Reprod. 1993;49:112–23.

    Article  PubMed  CAS  Google Scholar 

  10. Bjorndahl L, Martimer D, Barrat C, Castilla A, Menkveld R, Kvist U, editors. Practical guide to basic laboratory andrology. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  11. Donnez J, Samuel S, editors. Principles and practice of fertility preservation. Cambridge: Cambridge University Press; 2011.

    Google Scholar 

  12. Lanza R, Langer R, editors. Principles of tissue engineering. 2nd ed. San Diego: Academic; 2000.

    Google Scholar 

  13. Behrman SJ, Sawada Y. Heterologous and homologous inseminations with human semen frozen and stored in a liquid-nitrogen refrigerator. Fertil Steril. 1966;17(4):457–66.

    PubMed  CAS  Google Scholar 

  14. Nijs M, Ombelet W. Cryopreservation of human sperm. Hum Fertil. 2001;4(3):158–63.

    Article  CAS  Google Scholar 

  15. Bansal AK, Bilaspuri GS. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int. 2011;2011:686137.

    Article  PubMed Central  Google Scholar 

  16. Sikka SC. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci. 1996;1:e78–86.

    PubMed  CAS  Google Scholar 

  17. Paasch U, Sharma RK, Gupta AK, Grunewald S, Mascha EJ, Thomas Jr AJ, Glander HJ, Agarwal A. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod. 2004;71(6):1828–37.

    Article  PubMed  CAS  Google Scholar 

  18. Royere D, Hamamah S, Nicolle JC, Lansac J. Chromatin alterations induced by freeze-thawing influence the fertilizing ability of human sperm. Int J Androl. 1991;14(5):328–32.

    Article  PubMed  CAS  Google Scholar 

  19. Fjällbrant B, Ackerman DR. Cervical mucus penetration in vitro by fresh and frozen-preserved human semen specimens. J Reprod Fertil. 1969;20:515–7.

    Article  PubMed  Google Scholar 

  20. Wündrich K. Activation of caspases in human spermatozoa during cryopreservation-an immunoblot study. Cell Tissue Bank. 2006;7(2):81–90.

    Article  PubMed  Google Scholar 

  21. Morris GJ. Rapidly cooled human sperm: no evidence of intracellular ice formation. Hum Reprod. 2006;21(8):2075–83.

    Article  PubMed  CAS  Google Scholar 

  22. Devireddy RV, Swanlund DJ, Roberts KP, Pryor JL, Bischof JC. The effect of extracellular ice and cryoprotective agents on the water permeability parameters of human sperm plasma membrane during freezing. Hum Reprod. 2000;15(5):1125–35.

    Article  PubMed  CAS  Google Scholar 

  23. Calamita G, Mazzone A, Cho YS, Valenti G, Svelto M. Expression and localization of the aquaporin-8 water channel in rat testis. Biol Reprod. 2001;64:1660–6.

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki K, Yanagida K, Yanagimachi R. Comparison of the media for isolation and storage of round spermatid nuclei before intracytoplasmic injection. J Assist Reprod Genet. 1998;15(6):408.

    Article  Google Scholar 

  25. Giraud MN, Motta C, Boucher D, Grizard G. Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum Reprod. 2000;15(10):2160–4.

    Article  PubMed  CAS  Google Scholar 

  26. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20:61–9.

    Article  PubMed  CAS  Google Scholar 

  27. Said TM, Gaglani A, Agarwal A. Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online. 2010;21(4):456–62.

    Article  PubMed  Google Scholar 

  28. Donnelly ET, McClure N, Lewis SE. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril. 2001;76(5):892–900.

    Article  PubMed  CAS  Google Scholar 

  29. Duru NK, Morshedi MS, Schuffner A, Oehninger S. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl. 2001;22(4):646–51.

    PubMed  CAS  Google Scholar 

  30. Isachenko E, Isachenko V, Katkov II, Rahimi G, Schöndorf T, Mallmann P, et al. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Hum Reprod. 2004;19(4):932–9.

    Article  PubMed  CAS  Google Scholar 

  31. Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, et al. Vitrification of human spermatozoa without cryoprotectants. Cryo Letters. 2002;23(2):93–102.

    PubMed  CAS  Google Scholar 

  32. Isachenko V, Isachenko E, Katkov II, Montag M, Dessole S, Nawroth F, Van Der Ven H. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod. 2004;71(4):1167–73.

    Article  PubMed  CAS  Google Scholar 

  33. Fahy GM. The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology. 1986;23(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  34. Pegg DE, Diaper MP. On the mechanism of injury to slowly frozen erythrocytes. Biophys J. 1988;54:471–88.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Shaw JM, Oranratnachai A, Trounson AO. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology. 2000;53(1):59–72.

    Article  PubMed  CAS  Google Scholar 

  36. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21:407–26.

    Article  PubMed  CAS  Google Scholar 

  37. Liebermann J, Tucker M, Graham J, Han T, Davis A, Levy MJ. Blastocyst development after vitrification of multipronucleate zygotes using the flexipet denuding pipette (FDP). Reprod Biomed Online. 2002;4:148–52.

    Article  Google Scholar 

  38. Vajta G, Kuwayama M, Holm P, Booth PJ, Jacobsen H, Greve T, Callesen H. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev. 1998;51:53–8.

    Article  PubMed  CAS  Google Scholar 

  39. Oberstein N, O’Donovan MK, Bruemmer JE. Cryopreservation of equine embryos by open pulled straws, cryoloop, or conventional cooling methods. Theriogenology. 2001;15:607–13.

    Article  Google Scholar 

  40. Papis K, Shimizu M, Izaike Y. Factors affecting the survivability of bovine oocytes vitrified in droplets. Theriogenology. 2000;15:651–8.

    Article  Google Scholar 

  41. Martino A, Songsasen N, Leibo SP. Development into blastocysts of bovine oocytes cryopreserved by ultra/rapid cooling. Biol Reprod. 1996;54:1059–69.

    Article  PubMed  CAS  Google Scholar 

  42. Hong SW, Chung HM, Lim JM, Ko JJ, Yoon TK, Yee B, Cha KY. Improved human oocyte development after vitrification: a comparison of thawing methods. Fertil Steril. 1999;72:142–6.

    Article  PubMed  CAS  Google Scholar 

  43. Lane M, Bavister BD, Lyons EA, Forest KT. Containerless vitrification of mammalian oocytes. Nat Biotechnol. 1999;17:1234–6.

    Article  PubMed  CAS  Google Scholar 

  44. Matsumoto H, Jiang JY, Tanaka T, Sasada H, Sato E. Vitrification of large quantities of immature bovine oocytes using nylon mesh. Cryobiology. 2001;42:139–44.

    Article  PubMed  CAS  Google Scholar 

  45. Endo Y, Fujii Y, Shintani K, Seo M, Motoyama H, Funahashi H. Single spermatozoon Endo freezing using Cryotop. J Mamm Ova Res. 2011;28:47–52.

    Article  Google Scholar 

  46. Endo Y, Fujii Y, Shintani K, Seo M, Motoyama H, Funahashi H. Simple vitrification for small numbers of human spermatozoa. Reprod Biomed Online. 2012;24(3):301–7.

    Article  PubMed  CAS  Google Scholar 

  47. Gao D, Mazur P, Critser J. Fundamental cryobiology of mammalian spermatozoa. London: Academic; 1997.

    Google Scholar 

  48. Sánchez R, Risopatrón J, Schulz M, Villegas JV, Isachenko V, Isachenko E. Vitrified sperm banks: the new aseptic technique for human spermatozoa allows cryopreservation at 86 °C. Andrologia. 2012;44(6):433–5.

    Article  PubMed  Google Scholar 

  49. Ricci G, Perticarari S, Boscolo R, Montico M, Guaschino S, Presani G. Semen preparation methods and sperm apoptosis: swim-up versus gradient-density centrifugation technique. Fertil Steril. 2009;91(2):632–8.

    Article  PubMed  Google Scholar 

  50. Ahmad L, Jalali S, Shami S, Akram Z. Sperm preparation: DNA damage by comet assay in normo- and teratozoospermics. Arch Androl. 2007;53(6):325–38.

    Article  PubMed  CAS  Google Scholar 

  51. Sakkas D, Urner F, Bianchi PG, Bizzaro D, Wagner I, Jaquenoud N, et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod. 1996;11(4):837–43.

    Article  PubMed  CAS  Google Scholar 

  52. Endo Y, Fujii Y, Kurotsuchi S, Motoyama H, Funahashi H. Successful delivery derived from vitrified-warmed spermatozoa from a patient with nonobstructive azoospermia. Fertil Steril. 2012;98(6):1423–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakina Kagalwala MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kagalwala, S. (2015). Sperm Vitrification. In: Allahbadia, G., Kuwayama, M., Gandhi, G. (eds) Vitrification in Assisted Reproduction. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1527-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1527-1_4

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1526-4

  • Online ISBN: 978-81-322-1527-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics