Skip to main content

Thermal Methods

  • Chapter
  • First Online:
Phase Transformation of Kaolinite Clay
  • 1381 Accesses

Abstract

Heating a substance causes a variety of changes. According to International confederation on thermal analysis (ICTA), a group of techniques are being used to correlate the temperature variation with some physical properties of the substance. Thermal analysis technique shows some curves which is a measure of property as a function of temperature and that is characteristic of a particular substance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P.L. Arens, A study of differential thermal analysis of clay and clay minerals, Gravenage, Wageningen, Netherland, 1951, Excelsiors Fotd—offset’s. Soc. Sci. 72(5), 406 (1951)

    Google Scholar 

  • E.F. Aglietti, J.M. Porto-López, E. Pereira, Mechanochemical effects in Kaolinite grinding, part I: Textural and physicochemical aspects. Int. J. Miner. Process. 16, 125–133 (1986)

    Article  CAS  Google Scholar 

  • E.F. Aglietti, J.M. Porto-Lo´pez, E. Pereira. Mechanochemical effects in kaolinite grinding, Part II: Structural aspects. ibid.16, 135–146 (1986)

    Google Scholar 

  • W.F. Bradley, R.E. Grim, High-temperature thermal effects of clay and related materials. Am. Mineral. 36(3/4), 182–201 (1951)

    Google Scholar 

  • D.S. Belyankin, in Mullite, Its Structure, Formation and Significance, ed. by J. Grofcsik, F. Tamas and A. Kiado (Publishing House of the Hungarian Academy of Sciences 1961, Budapest 1932), pp. 70

    Google Scholar 

  • M. Bulens, B. Delmon, The exothermic reaction of metakaolinite in the presence of mineralizers: influence of crystallinity. Clays Clay Miner. 25(4), 271–277 (1977)

    Google Scholar 

  • M. Bellotto, High temperature phase transformation in kaolinite: the influence of disorder and kinetics on the reaction path. Mater. Sci. Forum, 166–169, 3–20 (1994)

    Google Scholar 

  • E.B. Colegrave and G.R. Rigby, The Decomposition of kaoliite by heat. Trans. Brit. Ceram. Soc. 51(6), 355–367(1952)

    Google Scholar 

  • A.K. Chakraborty and D.K. Ghosh, Kaolinite–Mullite Reaction Series. Cent. Glass & Ceram. Res. Instt. Bull. 23(2), 86–88 (1976)

    Google Scholar 

  • A.K. Chakraborty, Resolution of thermal peaks of Kaolinite by TMA and DTA. J. Am. Ceram. Soc. 75(7), 2013–2047 (1992)

    Article  CAS  Google Scholar 

  • A.K. Chakraborty, Application of TMA and DTA studies on the crystallization behavior of SiO2 in thermal transformation of Kaolinite. J. Therm. Anal. 39, 280–299 (1993)

    Google Scholar 

  • A.K. Chakraborty, DTA study of preheated Kaolinite in the mullite formation region. Thermochima Acta 398(1–2), 203–209 (2003)

    Article  CAS  Google Scholar 

  • C.Y. Chen, G.S. Lan, W.H. Tuan, Micro structural evolution of Mullite during the sintering of Kaolinite powder compacts. Ceram. Int. 26(7), 715–720 (2000)

    Google Scholar 

  • R.D. Dragsdorf, H.E. Kissinger, A.T. Perkins, An x-ray study of the decomposition of kaolinite. Soil Sci. Soc. Am. J. 71, 439–448 (1951)

    CAS  Google Scholar 

  • W.L. De Keyser, Silicate Industries, vol. 24. pp. 117 and190 (1959)

    Google Scholar 

  • W.L. De Keyser, Differential thermo balance. Nature [London] 172, 364 (1953)

    Article  Google Scholar 

  • W.L. De Keyser, Contribution to the study of Mullite. Ber. Dtsch. Keram. Ges. 40, 304–315 (1963a)

    Google Scholar 

  • W.L. De Keyser, R. Wollast, L. De Laet, Contribution to the study of OH groups In kaolin minerals. International Clay Conference (Pergamon Press, 1963b), pp. 75–86

    Google Scholar 

  • W.L. De Keyser, Note concerning the exotherm reaction of kaolinite & formation of spinel phase preceding that of mullite. International Clay Conference (Pergamon Press, 1963c), pp. 91–96

    Google Scholar 

  • L. Erdey, F. Paulik, J. Paulik, Differential thermogravimetry. Nature 174, 885–886 (1954)

    Google Scholar 

  • F. Freund, Die Deutungder Exothermen Reaktio Des Kaolinite Als Reaktio Des Aktiven Zustandes, Ber. Deut. Keram. Ges. 37, 209–218 (1960a)

    Google Scholar 

  • F. Freund, Explanation of exothermal reaction of kaolinite as a ‘Reaction of the Active State’. Ber. Deut. Keram. Ges. 37(51), 209–218 (1960b)

    Google Scholar 

  • W.H. Flank, Behavior of kaolinite pellets at elevated temperature. Clays Clay Miner. 20(1), 1–18 (1979)

    Google Scholar 

  • R.E. Grim and R.A. Rowland, Differential thermal analysis of clays & shales, A control of prospecting method. J. Am. Ceram. Soc. 27(3), 65–76 (1944)

    Google Scholar 

  • R.W. Grimshaw, E. Heaton, R.L. Roberts, Refractory clays 11. Trans. Br. Ceram. Soc. 44, 76–92 (1945)

    CAS  Google Scholar 

  • R.E. Grim, Differential thermal curves of prep. Mixtures of clay minerals. Am. Mineral. 32(9, 10), 493–501 (1947)

    Google Scholar 

  • R.M. Gruver, E.C. Henry, H. Heysteck, Suppression of thermal reactions in Kaolinite. Am. Min. 34, 869 (1949)

    Google Scholar 

  • J. Gerad-Hirne, C. Lamy, Identification of clays by differential thermal analysis. Bull. Soc. France Ceram. 26–40 (1951)

    Google Scholar 

  • H.D. Glass, High-temperature phases from kaolinite and halloysite. Am. Mineral. 39, 193–207 (1954)

    CAS  Google Scholar 

  • R.B. Graf , F.M. Wahl and R.E. Grim, Phase transformations in silica-alumina-magnesia mixtures as examined by continuous X-ray diffraction : 1. Talc-kaolinite composition. Amer. Min. 47, 1273–1283 (1962)

    Google Scholar 

  • F. González García, M.T. Ruiz Abrio and M.G. Rodríguez, Effects of dry grinding on two kaolins of different degrees of crystallinity. Clay Miner. 26(4) 549–565 (1991)

    Google Scholar 

  • H.S. Houldsworth and J.W. Cobb, Behavior of fireclays, bauxites etc on heating. I. Trans. Brit Ceram. Soc. 22, 111–137, 344–348 (1923)

    Google Scholar 

  • J.F. Hyslop, A. McMurdo, The thermal expansion of some clay mineral. Trans. Ceram. Soc. (England) 37, 180–186 (1938)

    Google Scholar 

  • R.A. Heindl, L.E. Meng, Length changes and endothermic and exothermic effects during heating of flint and aluminous clays. J. Res. Natl. Bureau. Stand. 23(9), 427–441 (1939)

    Google Scholar 

  • C.G. Harman, F. Fraulini, Properties of Kaolinite as a function of its particle size. J. Am. Ceram. Soc. 23, 252–259 (1940)

    Article  CAS  Google Scholar 

  • T. Haase, K. Winter, Influence of grinding on the ceramic properties of kaolin (in Fr.). Bull. Soc. Fr. Ceram. 44, 13–19 (1959)

    Google Scholar 

  • I.H. Insley, R.H. Ewell, Thermal behavior of the kaolin minerals. J. Res. Natl. Bur. Stand. 14(S), 615–627 (1935)

    Google Scholar 

  • A. La Iglesium, A.J. Anzar, Crystallinity variations in Kaolinite induced by grinding and pressure treatments. J. Mater. Sci. 31, 4671–4677 (1996)

    Google Scholar 

  • S.M. Johnson, J.A. Pask, J.S. Moya, Influence of impurities on high-temperature reactions of Kaolinite. J. Am. Ceram. Soc. 65(1), 31–35 (1982)

    Google Scholar 

  • W.P. Kelly and H. Jenny, Reaction of crystal structure to base exchange and its bearing on base exchange. soil sci. 41, 367–382 (1936)

    Google Scholar 

  • G. Kulbicki, R.E. Grim, A new method for thermal dehydration studies of clay minerals. Min. Mag. 32, 53 (1959)

    Article  CAS  Google Scholar 

  • T.A. Korneva, T.S. Yusupov, High-temperature behavior of Kaolinite after super-fine grinding, in Proceedings of the First European Symposium on Thermal Analysis (Heyden, London, 1976), pp. 336–339

    Google Scholar 

  • S. Kawai, M. Yoshida, G. Hashizume, Preparation of mullite from Kaoline by dry grinding, J. Am. Ceram. Soc. Jpn. 98, 669–674 (1990)

    Google Scholar 

  • E. Kristóf, A.Z. Juhász, I. Vassányi, The effect of mechanical treatment on the crystal structure and thermal behavior of Kaolinite. Clays Clay Miner. 41(5) 608–612 (1993)

    Google Scholar 

  • H. Le Chatlier, De 1’Action de la Chaleur sur les Argiles” (“Concerning the Action of Heat on Clays”). Bull. SOC. Fr. Mineral. 10, 204–211 (1887)

    Google Scholar 

  • W.D. Laws, J.B. Page, Changes produced in Kaolinite by dry grinding. Soil Sci. Soc. Am. J. 62, 319–336 (1946)

    CAS  Google Scholar 

  • J. Lemaitre, M. Bullens, B. Delmon, Influence of mineralizers on the 950 °C exothermic reaction of metakaolinite, in Proceedings of the International Clay Conference (Mexico City, Mexico, July 1975), ed. by S.W. Bailey (Applied Publishing Ltd., Wilmette, 1975), pp. 539–544

    Google Scholar 

  • M. Lomeli, L.M. Flores-Velez, I. Esparza, R. Torres, O. Domínguez, Catalytic effect of CaF2 nanoparticles on sintering behavior of kaolin-based materials. J. Am. Ceram. Soc. 92(7) 1526–1533 (2009)

    Google Scholar 

  • J. Meneret, Bul. Cer. Fr. 35, 3 (1957)

    Google Scholar 

  • R.C. Mackenzic, Thermal Methods, Differential Thermal. Investigation of Clays (The Mineralogical Society, London, 1957), p. 22

    Google Scholar 

  • J.G. Miller, T.D. Oulton, Prototropy in Kaolinite during percussive grinding. Clays Clay Miner. 18(6), 313–323 (1970)

    Google Scholar 

  • F.H. Norton, Critical study of differentia thermal method for Identification clay minerals. J. Am. Ceram. Soc. 22, 54–63 (1939)

    Article  CAS  Google Scholar 

  • P.G. Nutting, Some standard thermal dehydratiom curves of minerals. U.S. Geol. Surv. Profess. Paper. 197E, 197–216 (1943)

    Google Scholar 

  • I. Rhode, Keram. Rundschau 35, 414–415 (1927)

    Google Scholar 

  • C.S. Ross and P.F. Kerr, The Kaolin Mineral. U.S. Geol. Surv. Profess. Paper. 165E, (1930)

    Google Scholar 

  • A.N. Sokoloff, Molekulares Zerfall Vo Kaolinites Anfang Du Gluhens, Tonind. Ztg. 36, 1107–1110 (1912)

    Google Scholar 

  • Y.A. Samoilov, Thermal curves of minerals. Bull. Acad. Sci. Petrograde 1759, 1768 (1915)

    Google Scholar 

  • S. Spiel, L.H. Berkelheimer, J.A. Pask, B. Davis, Differential thermal analysis—its applications to behavior clays and other aluminous minerals. U.S. Bur. Mines. Tech. 664 (1945)

    Google Scholar 

  • Sedletski, in Mullite, Its Structure, Formation and Significance, ed. by J. Grofcsik, F. Tamas and A. Kiado (Publishing House of the Hungarian Academy of Sciences 1961, Budapest 1949), pp. 70, X-ray characteristic of Monothermite, pp 70

    Google Scholar 

  • W.J. Smothers, Y. Chiang, and A. Wilson, Bibliography of differential thermal analysis. Univ.Ark. Inst. Sci. Technol. Res. Ser. 31 (1951)

    Google Scholar 

  • T. Sudo, K. Nagasawa, M. Amafuji, M. Kimura, S. Honda, T. Muto, Studies of Japans clay minerals. J. Geol. Soc. Jpn 58, 115–130 (1952)

    Article  CAS  Google Scholar 

  • P. Spinedi, O. Franciosi, Thermo Diff. Precis. Anal. React. Sci. 22, 2323–2339 (1952)

    CAS  Google Scholar 

  • R.L. Stone, Differential thermal analysis of kaolin group mineral under controlled partial pressure of H2O. J. Am. Ceram. Soc. 35(1), 90 (1952)

    Google Scholar 

  • R.L. Stone and R.A. Rowland, in: Thermoanalytical Methods of Investigation, ed. by P.D. Garn, 1965. (Academic Press, New York, 1955), p. 297

    Google Scholar 

  • K.H. Schuller and H. Kromer, Primary mullite as a pseudomorph after kaolinite.in Proceedings of the International Clay Conference (Mexico City, 1975), ed. by S.W. Bailey. (Applied Publishing, Wilmette, IL, 1976) p. 533–38

    Google Scholar 

  • G. Suraj, C.S.P. Iyer, S. Rugmini, and M. Lalithambika, The effect of micronization on kaolinites and their sorption behavior. Appl. Clay Sci. 12(2) 111–30 (1997)

    Google Scholar 

  • P.J. Sánchez-Soto, M.C.J. de Haro, L.A. Pérez-Maqueda, I. Varona, J.L. Pérez-Rodríguez, Effects of dry grinding on the structural changes of Kaolinite powders. J. Am. Ceram. Soc. 83(7) 1649–1657 (2000)

    Google Scholar 

  • G. Tamman, W. Pape, Ilber Den Wasserverlust Des Kaolines and Seinverhat-en In Festen Zuden Carbonatem Und Oxyden Der Erdalkalien. Z. Anorg. Allg. Chem. 127, 43–68 (1923)

    Google Scholar 

  • Y. Tsuzuki, K. Nagasawa, A transitional stage to 980 °C exotherm of kaolin minerals. Clay Sci. 3(5), 87–102 (1969)

    Google Scholar 

  • S. Udagawa, T. Nakada, M. Nakahira, Molecular structure of allophane as revealed by its thermal transformation, in Proceedings of International Clay Conference, vol. 1, ed. by L. Heller, B Heller (Israil University Press, Gerusalem, 1969), p. 151

    Google Scholar 

  • C.J. Van Nieuwenberg, H.A.J. Pieters, Rehydration of Metakaolin and the synthesis of Kaolin. Ber. Beut. Keram.Ges. 10, 260–263 (1929)

    Google Scholar 

  • F. Vaughn, Energy changes when kaolin minerals are heated. Clay Mineral Bull. 2(13), 265–274 (1955)

    Google Scholar 

  • F. Vaughn, Trans. Brit Ceram. Soc. 57, 38 (1958)

    Google Scholar 

  • R. Wohlin, Thermische analyse Von Tonen and Bauxiten. Silikatz 1, 225 (1913)

    Google Scholar 

  • F.M. Wahl, R.E. Grim, High temperature DTA and XRD studies of reactions, in Twelfth National Conference on Clays and Clay Minerals, pp. 69–81 (1964)

    Google Scholar 

  • R.R. West, in Ceramics, ed. by R.C. Mackenzie. Differential Thermal Analysis, Fundamental Aspects, vol. 1 (Academic Press, London, 1970), pp. 149–179

    Google Scholar 

  • T. Watanabe, H. Shimizu, K. Nagasawa, A. Masuda, and H. Saito, 29Siand 27Al- MAS/NMR study of the thermal transformations of kaolinite. ClayMiner. 22, 37–48 (1987)

    Google Scholar 

  • T. Yamauchi, S. Kato, Thermal analysis of raw clays. J. Jpn. Ceram. Assn. 50, 303 (1943)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshoy Kumar Chakraborty .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Chakraborty, A.K. (2014). Thermal Methods. In: Phase Transformation of Kaolinite Clay. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1154-9_3

Download citation

Publish with us

Policies and ethics