Skip to main content

A Novel HMG-CoA Reductase Inhibitor from Methanolic Extract of Holoptelea integrifolia (Roxb.) Planch

  • Conference paper
  • First Online:
Prospects in Bioscience: Addressing the Issues
  • 1196 Accesses

Abstract

Holoptelea integrifolia is a large deciduous tree included in lekhaneyagana, a pharmacological classification remarked in Charaka Samhita, which means “reduce excess fat”. The present study was to check the effect of methanolic fraction of H. integrifolia on serum lipids, faecal lipids and HMG-CoA reductase (HMGR), an enzyme which catalyses the committed step in cholesterol biosynthesis. H. integrifolia extracts were administered orally at doses (200 and 400 mg/kg body weight) to diet-induced obese Sprague Dawley (SD) strain rats. Mevinolin was used as positive control. After 4 weeks of administration, the concentrations of total cholesterol (T-c), triglycerides (TG) and low-density lipoprotein (LDL-c) in serum were significantly lower in H. integrifolia-treated groups compared to high-fat group. Both groups showed higher ratio of high-density lipoprotein cholesterol (HDL-c)/(T-c) compared to high-fat diet group. In this study, HMGR activity was enormously reduced, and detailed faecal analysis showed a remarkable increase in faecal T-c and TG compared to high-fat control. It is presumed that a higher hypolipidemic effect of H. integrifolia might be accounted by the combined effect by HMGR inhibition which results in suppression of endogenous cholesterol biosynthesis and blocking the intestinal fat absorption.

The methanolic fraction of H. integrifolia on LCMS and tandem mass spectrometry analysis showed the presence of a compound, 2-[(3,4-dimethyl-2-oxo-2H-chromen-7-yl)oxy] propanoate (C1). The compound C1 was subjected to molecular docking studies with human HMGR (1HW8). The results indicate that the compound C1 can bind strongly to free HMGR in its active site and support the in vivo results. Based on this observation, we propose that the compound C1 is a potent inhibitor of HMGR and hence potential anticholesterol agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HDL-c:

High-density lipoprotein cholesterol

HMGR:

HMG-CoA reductase

LCMS:

Liquid chromatography mass spectro­metry

LDL-c:

Low-density lipoprotein cholesterol

MSMS:

Tandem mass spectrometry

RT:

Retention time

T-c:

Total cholesterol

TG:

Triglycerides

References

  1. WHO. Obesity: preventing and managing the global epidemic, Report of a WHO consultation. World Health Organ Tech Rep Ser 894, i-xii; 2000. pp. 1–253.

    Google Scholar 

  2. Allison DB, Fontaine KR, Manson JE, Stevens J, Van Itallie TB. Annual deaths attributable to obesity in the United States. J Am Med Assoc. 1999;282:1530–8.

    Article  CAS  Google Scholar 

  3. Wolf AM, Colditz GA. Current estimates of the economic cost of obesity in the United States. Obes Res. 1998;6:97–106.

    Article  PubMed  CAS  Google Scholar 

  4. Kee EA, Livengood MC, Carter EE, McKenna M, Cafiero M. Aromatic interactions in the binding of ligands to HMG-CoA reductase. J Phys Chem B. 2009;113:14810–5.

    Article  PubMed  CAS  Google Scholar 

  5. Menge T, Hartung HP, Stüve O. Statins – a cure-all for the brain? Nat Rev Neurosci. 2005;6:325–31.

    Article  PubMed  CAS  Google Scholar 

  6. DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG-CoA reductase. Cell Res. 2008;18:609–21.

    Article  PubMed  CAS  Google Scholar 

  7. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292:1160–4.

    Article  PubMed  CAS  Google Scholar 

  8. Bambhole VD, Jiddewar GG. Anti obesity effect of Iris versicolor and Holoptelea integrifolia in rats. Sachitra Ayurved. 1985;37:557–61.

    Google Scholar 

  9. Dinesh K, Karunesh K, Jyoti G, Navita B, Sunil K. A mini review on chemistry and biology of Holoptelea integrifolia (Roxb). Planch (Ulmaceae). Asian Pac J Trop Biomed. 2012;2:1–6.

    Google Scholar 

  10. Gokaraju GR, Gokaraju RR, Golakoti T, Sengupta K, Bhupathiraju K. Anti-obese compositions containing Holoptelea integrifolia extracts, US patent 20100203078; 2010.

    Google Scholar 

  11. Sharma PV. Charaka samhita. Varanasi: Chaukhambha Orientalia; 2000.

    Google Scholar 

  12. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.

    Article  PubMed  CAS  Google Scholar 

  13. Xu C, Haiyan Z, Hua Z, Jianhong Z, Pin D. Effect of Curcuma kwangsiensis polysaccharides on blood lipid profiles and oxidative stress in high-fat rats. Int J Biol Macromol. 2009;44:138–42.

    Article  PubMed  CAS  Google Scholar 

  14. Tajuddin Ahmad S, Latif A, Qasmi IA, Amin KMY. An experimental study of sexual function improving effect of Myristica fragrans Houtt. (nutmeg). BMC Complement Altern Med. 2005;5:16–23.

    Article  Google Scholar 

  15. Rubinstein A. National cholesterol education program, second report of the Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults. Circulation. 1995;91:908–9.

    PubMed  CAS  Google Scholar 

  16. Stein EA, Myers GL. National cholesterol education program recommendations for triglyceride measurement: executive summary. The national cholesterol education program working group on lipoprotein measurement. Clin Chem. 1995;41:1421–6.

    PubMed  CAS  Google Scholar 

  17. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    PubMed  CAS  Google Scholar 

  18. Rao AV, Ramakrishnan S. Indirect assessment of hydroxymethylglutaryl-CoA reductase (NADPH) activity in liver tissue. Clin Chem. 1975;21:1523–5.

    PubMed  CAS  Google Scholar 

  19. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    PubMed  CAS  Google Scholar 

  20. Gasteiger J, Marsili M. Interactive partial equalization of orbital electro negativity-a rapid access to atomic charges. Tetrahedron. 1980;36:3219–28.

    Article  CAS  Google Scholar 

  21. Delano W. The PyMOL molecular graphics system. 2002. URL http://www.pymol.org

  22. Goodsell DS. Computational docking of biomolecular complexes with AutoDock. Cold Spring Harb Protoc. 2009;2009:pdb.prot5200.

    Article  PubMed  Google Scholar 

  23. Bainton D, Miller NE, Bolton CH, Yarnell JW, Sweetnam PM, Baker IA, Lewis B, Elwood PC. Plasma triglyceride and high density lipoprotein cholesterol as predictors of ischaemic heart disease in British men. The caerphilly and speedwell collaborative heart disease studies. Br Heart J. 1992;68:60–6.

    Article  PubMed  CAS  Google Scholar 

  24. Istvan ES. Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Am Heart J. 2002;144:S27–32.

    Article  PubMed  CAS  Google Scholar 

  25. Argüelles N, Sánchez-Sandoval E, Mendieta A, Villa-Tanaca L, Garduño-Siciliano L, Jiménez F, Cruz MDC, Medina-Franco JL, Chamorro-Cevallos G, Tamariz J. Design, synthesis, and docking of highly hypolipidemic agents: Schizosaccharomyces pombe as a new model for evaluating alpha-asarone-based HMG-CoA reductase inhibitors. Bioorg Med Chem. 2010;18:4238–48.

    Article  PubMed  Google Scholar 

  26. Wilson PW. High-density lipoprotein, low-density lipoprotein and coronary artery disease. Am J Cardiol. 1990;66:7A–10.

    Article  PubMed  CAS  Google Scholar 

  27. Williams P, Robinson D, Bailey A. High-density lipoprotein and coronary risk factors in normal men. Lancet. 1979;1:72–5.

    Article  PubMed  CAS  Google Scholar 

  28. Pyo YH, Seong KS. Hypolipidemic effects of Monascus-fermented soybean extracts in rats fed a high-fat and -cholesterol diet. J Agric Food Chem. 2009;57:8617–22.

    Article  PubMed  CAS  Google Scholar 

  29. Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Dis. 2003;2:517–26.

    Article  CAS  Google Scholar 

  30. Sarver RW, Bills E, Bolton G, Bratton LD, Caspers NL, Dunbar JB, Harris MS, Hutchings RH, Kennedy RM, Larsen SD, Pavlovsky A, Pfefferkorn JA, Bainbridge G. Thermodynamic and structure guided design of statin based inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Med Chem. 2008;51:3804–13.

    Article  PubMed  CAS  Google Scholar 

  31. Medina-Franco JL, López-Vallejo F, Rodríguez-Morales S, Castillo R, Chamorro G, Tamariz J. Molecular docking of the highly hypolipidemic agent alpha-asarone with the catalytic portion of HMG-CoA reductase. Bioorg Med Chem Lett. 2005;15:989–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

DBT-BIF, Govt. of India, is gratefully acknowledged for the support in the form of Bioinformatics Infrastructure Facility (BIF) at the Department of Biotechnology and Microbiology, Kannur University, for computational and other allied facilities. Arun KS is thankful to UGC-BSR, New Delhi, for providing the fellowship to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Augustine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer India

About this paper

Cite this paper

Arun, K.S., Augustine, A. (2012). A Novel HMG-CoA Reductase Inhibitor from Methanolic Extract of Holoptelea integrifolia (Roxb.) Planch. In: Sabu, A., Augustine, A. (eds) Prospects in Bioscience: Addressing the Issues. Springer, India. https://doi.org/10.1007/978-81-322-0810-5_7

Download citation

Publish with us

Policies and ethics