Skip to main content

Damage Assessment of the Gall Mite Aceria pongamiae Keifer 1966 (Acari: Eriophyidae) on Pongamia pinnata (L.) Pierre

  • Conference paper
  • First Online:
Prospects in Bioscience: Addressing the Issues

Abstract

Pongamia pinnata is well known for its use in traditional system of medicine, for the treatment of varied human diseases like bronchitis, whopping cough, rheumatism, diarrhoea, dyspepsia, flatulence, gonorrhoea, leprosy and even tumours. Aceria pongamiae is a highly host specific eriophyid mite, producing varying numbers of fingerlike leaf galls on P. pinnata. The number of galls on infested leaf varies, quite often individual galls fused to form complex, irregularly shaped, massive structures, covering entire laminar area including the midrib, vein and vein lets. Each gall carries hundreds of mites in different stages of development, namely, the egg, 1st nymph, 1st quiescent stage, 2nd nymph, 2nd quiescent stage and adult male and female. The galls induced by the mite adversely affect the quality of the leaves of P. pinnata, in turn reducing its economic utility in preparation of Ayurvedic medicines. Loss/reduction of leaf lamina would also drastically affect the photosynthetic machinery of the plant, thereby leading to biomass loss. The present study describes the morphological and anatomical changes induced by the feeding activity of various developmental stages of the mite A. pongamiae on the leaves of P. pinnata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keifer H, Baker E, Kono T, Delfinado M, Styer W. An illustrated guide to plant abnormalities caused by Eriophyid mites in North America, USDA, Agriculture handbook number 573. Washington, DC: U.S. Dept. of Agriculture/Agricultural Research Service; 1982.

    Google Scholar 

  2. Westphal E. Cecidogenesis and resistance phenomena in mite-induced galls. In: Shorthouse J, Rohfritsch O, editors. Biology of insect-induced galls. New York: Oxford University Press; 1992. p. 141–56.

    Google Scholar 

  3. Weis A, Walton R, Crego C. Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entomol. 1988;33:467–86.

    Article  Google Scholar 

  4. Boczek J, Griffiths DA. Structure and systematics of eriophyid mites (Acari: Eriophyoidea) and their relationship to host plants. In: Williams MAJ, editor. Plant galls, systematics association special volume 49. Oxford: Calerdon Press; 1994. p. 119–29.

    Google Scholar 

  5. Castagnoli M. Ornamental coniferous and shade trees. In: Lindquist EE, Sabelis MW, Bruin J, editors. Eriophyoid mites – their biology, natural enemies and control. Amsterdam: Elsevier Science Publ; 1996. p. 661–71.

    Chapter  Google Scholar 

  6. Mani MS. Ecology of plant galls. The Hauge: W. Junk Publishers; 1964.

    Google Scholar 

  7. Jeppson LR, Keifer HH, Baker BW. Mites injurious to economic plants. Berkeley: University of California Press; 1975.

    Google Scholar 

  8. Larew HG. A comparative anatomical study of galls caused by the major cecidogenic groups, with special emphasis on nutritive tissue. Dissertation, Oregon State University, Corvallis USA; 1982.

    Google Scholar 

  9. Westphal E, Manson DCM. Feeding effects on host plants: gall formation and other distortion. In: Lindquist EE, Sabelis MW, Bruin J, editors. Eriophyoid mites—their biology, natural enemies and control. Amsterdam: Elsevier; 1996. p. 231–41.

    Chapter  Google Scholar 

  10. Boczek J, Petanovic R. Eriophyid mites as an agent for the biological control of weed. In: Moran VC, Hoffmann JH, editors. Proceedings of the 10th international symposium on Biological Control of Weeds. Stellenobosch South Africa, University of Cape Town; 1996. pp. 127–463, 19–26 Jan 1996.

    Google Scholar 

  11. Craemer C, Naser S, Smith Meyer MKP. Eriophyid mites (Acari:eriophyoideae; Eriophoidae) as control agents of weeds in South Africa. SA Tydskrif Vir Naturewetenskap en Technologie. 1996;15:99–109.

    Google Scholar 

  12. Westphal E, et al. Adaptation of gall mites (Acari, eriophyoidea) to live in galls. In: Margaris NS, editor. Plant, animal, and microbial adaptation to terrestrial environment. New York: Plenum Publishing Corporation; 1983. p. 69–75.

    Chapter  Google Scholar 

  13. Royalty RN, Perring TM. Morphological analysis of damage to tomato leaflets by tomato russet mite (Acari: Eriophyidae). J Econ Entomol. 1988;81(3):816–20.

    Google Scholar 

  14. McCoy CW, Albrigo LG. Feeding injury to the orange caused by the citrus rust mite, Phyllocoptruta oleivora (Prostigmata: Eriophyoidea). Ann Entomol Soc Am. 1975;68:289–97.

    CAS  Google Scholar 

  15. Krishnamurthi A. The wealth of India, Vol. VIII. Publication and information Directorate CSIR, New Delhi, India; 1969.

    Google Scholar 

  16. Shoba GF, Thomas M. Study of anti-diarrheal activity of four medicinal plants in castor-oil induced diarrhea. J Ethnopharmacol. 2001;76(1):73–6.

    Article  PubMed  CAS  Google Scholar 

  17. Naik M, Meher LC, Naik SN, Dasa LM. Production of biodiesel from high free fatty acid Kranja (Pongamia pinnata) oil. Biomass Bioenerg. 2008;32:354–7.

    Article  CAS  Google Scholar 

  18. Styer WE, Nault LR. Gall mites in Ohio. Ohio Rep. 1975;60(1):188–91.

    Google Scholar 

  19. Thomsen J. Feeding behavior of Eriophyes tiliae Pgst. and suction track in the nutritive cells of the galls caused by mites. Entl Medd. 1988;56(2):73–8.

    Google Scholar 

  20. Petanović R, Kielkiewicz M. Plant–eriophyoid mite interactions: specific and unspecific morphological alterations. Part II. Exp Appl Acarol. 2010; doi 10.1007/s 10493-009-9328-1.

    Article  PubMed  Google Scholar 

  21. Bronner R, Westphal E. Modifications des noyaux des cellules epidermiques foliaires de Solanacees soumises a l’action parasitaire d’un acerien cecidogene, Eriophyes cladophthirus. Premier Congres de la Societe Francaise de Phytopathologie, 1987; Rennes, Reumes; 39.

    Google Scholar 

  22. Bronner R, Westphal E, Dreger F. Chitosan, a component of the compatible interaction between Solanum dulcamara L. and the gall mite Eriophyes cladophthirus Nal. Physiol Mol Plant Pathol. 1989;34:117–30.

    Article  CAS  Google Scholar 

  23. Westphal E. Morphogenese, ultrastructure et etiologie de quelque galles d’Eriophyes (Acariens). Marcellia. 1977;39:193–375.

    Google Scholar 

  24. Kane NA, Jones CS, Vuorisalo T. Development of galls of Alnus glutinosa and Alnus incana (Betulaceae) caused by the eriophyid mite Eriophyes laevis (Nalepa). Int J Plant Sci. 1997;158(1):13–23.

    Article  Google Scholar 

  25. Thompson J. The coevolutionary process. Chicago: University of Chicago; 1994; p. 376.

    Google Scholar 

  26. Haukioja E, Niemela P, Siren S. Foliage phenols and nitrogen in relation to growth, insect damage and ability to recover after defoliation in the mountain birch Betula pubescens ssp. tortosa. Oecologia. 1985;65:214–22.

    Article  Google Scholar 

  27. Greene E. A diet- induced developmental polymorphism in a caterpillar. Science. 1989;243:643–6.

    Article  PubMed  CAS  Google Scholar 

  28. Feeny P. Effect of oak leaf tannins on larval growth of the winter moth, Operophtera brumata. J Insect Physiol. 1968;14:805–17.

    Article  CAS  Google Scholar 

  29. Balasubramanian M, Purushothaman D. Indole acetic acid in the eriophyid mite gall on Pongamia glabra Vent. caused by Eriophyes cheriani Massee (Eriophyidae: Acarina). Labdev J Sci Technol. 1972;10-B(3–4):172–3.

    Google Scholar 

  30. Tandon P, Arya HC. Presence of auxin protectors in Eriophyes induced Zizyphus stem galls. Experientia. 1980;36(8):958–9.

    Article  CAS  Google Scholar 

  31. Lee TT, Starratt AN, Jevnikar JJ. Regulation of enzymatic oxidation of indol-3-accetic acid by phenols: structure activity relationships. Phytochemistry. 1982;21(3):517–23.

    Article  CAS  Google Scholar 

  32. Hutangura P, Mathesius U, Jones MGK, Rolfe B. Auxin induction is a trigger for root gall caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Aust J Plant Physiol. 1999;26:221–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Ministry of Minority Affairs, Government of India for providing Maulana Azad National Fellowship. The authors are most grateful to Dr A.B. Remasree, Scientist, CMPR, Kottakkal, for providing guidelines and technical assistance for doing the photography work. The help rendered by the Nanotechnology Division of NIT, Calicut, in taking scanning electron micrograph of the mite is also gratefully acknowledged. We are also grateful to the technical help rendered by the Mycology Division of the Department of Botany, University of Calicut.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer India

About this paper

Cite this paper

Nasareen, P.N.M., Vardhanan, Y.S., Ramani, N. (2012). Damage Assessment of the Gall Mite Aceria pongamiae Keifer 1966 (Acari: Eriophyidae) on Pongamia pinnata (L.) Pierre. In: Sabu, A., Augustine, A. (eds) Prospects in Bioscience: Addressing the Issues. Springer, India. https://doi.org/10.1007/978-81-322-0810-5_38

Download citation

Publish with us

Policies and ethics