Skip to main content

PSII Fluorescence Techniques for Measurement of Drought and High Temperature Stress Signal in Crop Plants: Protocols and Applications

  • Chapter
  • First Online:
Molecular Stress Physiology of Plants

Abstract

Field crops are frequently exposed to drought and high temperature in the field. As the stress tolerance is the major target of many research and breeding programmes, the efficient and reliable tools and methods useful in screening of the heat and drought stress effects are required. The techniques based on measurement of chlorophyll fluorescence induction belong recently to fundamentals of plant stress research; however, in most cases the very basic tools are used and its potential is not utilised sufficiently. This proposed chapter tries to summarise the knowledge, starting from basic theory through parameters and useful experimental protocols and results up to special kinds of application of chlorophyll fluorescence techniques. In addition to generally used pulse-amplitude-modulated (PAM) method with saturation pulse analysis, the fast fluorescence kinetics, the fluorescence imaging, as well as simultaneous measurements of chlorophyll fluorescence with other parameters and their potential application in drought and heat-stress research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A ACO2 :

Photosynthetic CO2 assimilation

ABA:

Abscisic acid

ABS:

Absorbed photon flux

AL:

Actinic light

A leaf :

Absorbance of the light by leaf

area:

Area above the OJIP curve

C i :

Intercellular CO2 concentration

CSm :

Excited cross section (at F m)

CSo :

Excited cross section (at F 0)

D2:

Protein in reaction centre of PS II

d fTOT :

Driving force (based on PITOT)

DIo :

Dissipation from PS II (dark-adapted sample)

ETo :

Electron transport beyond QB (dark-adapted sample)

ETR:

Electron transport rate

F 0 :

Basal fluorescence

F d :

Fluorescence decrease (F d=F PF s)

F mF s′, F 0′:

Maximum, steady state and minimum fluorescence on light

F P :

Fluorescence maximum after actinic light is switched on

FR:

Far-red light

FRR:

Fast repetition rate

F s :

Steady-state fluorescence

F tmax :

Fluorescence value at time when Fm reaches its maximum

F v/F m :

Maximum quantum yield of PS II photochemistry

gm :

Mesophyll conductance

gs :

Stomatal conductance

I:

Irradiance

JIP JIP test:

The mathematical model for calculating electron yields and fluxes, based on fast fluorescence kinetics

LED:

Light-emitting diode

LHC2:

Light-harvesting complex of PS II

LHCP:

Peripheral light-harvesting complex

ML:

Measuring light

M o :

Initial slope of relative variable chlorophyll fluorescence

NPQ :

Non-photochemical quenching of maximum fluorescence

OEC:

Oxygen-evolving complex

OJIP (OKJIP):

The fast chlorophyll fluorescence induction

PAM:

Pulse-amplitude modulation

PDP:

Pump during probe

PFD:

Photon flux density

PI ABS :

Performance index

PI TOT :

Total performance index including the flow beyond PS I

PS I:

Photosystem I

PS II:

Photosystem II

QA :

Primary quinone electron acceptor in PS II

qE :

The energy quenching

qI :

The photoinhibitory quenching

qL qP :

Photochemical quenching based on ‘lake’ and ‘puddle’ model, respectively

qN :

Non-photochemical quenching of variable fluorescence

qT :

The state transition quenching

REo :

Electron transport beyond PS I (dark-adapted sample)

R fd :

Relative fluorescence decrease ratio

R n :

Dark (night) respiration

RuBP:

Ribulose bisphosphate

RWC:

Relative water content

S m :

Normalised area above OJIP curve

SP:

Saturation pulse

TC:

Critical temperature

TC(F 0):

Critical temperature based on F0 increase

TC(F v/F m):

Critical temperature based on Fv/Fm decrease

TRo :

Trapping flux in PS II (dark-adapted sample)

V cmax :

Maximum rate of carboxylation

V I :

Relative variable fluorescence at time 30 ms (I-step) after start of actinic light pulse

V J :

Relative variable fluorescence at time 2 ms (J-step) after start of actinic light pulse

V t :

Relative variable fluorescence in time t

W K :

Relative variable fluorescence at time 0.3 ms

WT:

Wild type

δ RE1 :

Probability of electron flow from QB beyond the PS I

ϕ Do :

Quantum yield of energy dissipation

ϕ ET2o :

Quantum yield of electron transport

ΦNO :

Quantum yield of non-organised energy dissipation

ΦNPQ :

Quantum yield of energy-dependent non-photochemical dissipation

ΦPo :

Maximum quantum yield of PSII photochemistry (F v/F m); ΦPSII; F q′/F m

ΔF′/F m′:

Effective quantum yield of PS II photochemistry

ϕ RE1o :

Quantum yield of reduction of end electron acceptors at the PSI acceptor side

ψ ET2 :

Probability of electron flow from QA beyond QB

ψ RE :

Probability of electron flow from QA beyond the PS I.

References

  • Araus JL, Amaro T, Voltas J, Nakkoul H, Nachit MM (1998) Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Res 55:209–223

    Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress. Adaptation in cereals. Crit Rev Plant Sci 27:377–412. doi:10.1080/07352680802467736

    Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86

    CAS  Google Scholar 

  • Ashraf M, Nawazish S, Athar HUR (2007) Are chlorophyll fluorescence and capacity potential physiological determinants of drought tolerance inn maize (Zea mays L.). Pak J Bot 39:1123–1131

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:659–668

    Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 403:1607–1621. doi:10.1093/jxb/erh196

    Google Scholar 

  • Balouchi HR (2010) Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. Int J Biol Life Sci 6:56–66

    Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Google Scholar 

  • Bilger W, Bjorkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    CAS  Google Scholar 

  • Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148

    CAS  Google Scholar 

  • Bogale A, Tesfaye K, Geleto T (2011) Morphological and physiological attributes associated to drought tolerance of Ethiopian durum wheat genotypes under water deficit condition. J Biol Environ Sci 1:22–36

    Google Scholar 

  • Boureima S, Oukarroum A, Diouf M, Cisse N, Van Damme P (2012) Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environ Exp Bot 91:37–43. http://dx.doi.org/10.1016/j.envexpbot.2012.02.015

    Google Scholar 

  • Bradbury M, Baker NR (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystems I and II. Biochim Biophys Acta 635:542–555

    CAS  PubMed  Google Scholar 

  • Brestic M, Cornic G, Fryer MJ, Baker NR (1995) Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196:450–457

    CAS  Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Repkova J (2008) Functional study of PS II and PSI energy use and dissipation mechanisms in barley wild type and chlorina mutants under high light conditions. In: Allen JF, Gantt E, Goldbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Brestic M, Olsovska K, Pivkova J (2010) Bioindication of thermotolerance of winter wheat (Triticum aestivum) photosynthetic apparatus. Acta fytotechnica et zootechnica 3:67–71

    Google Scholar 

  • Brestic M, Shao HB, Ferus P, Malbeck J (2011) Perioxidases play important roles in abscisic acid (ABA)-simulating photosystem II (PSII) thermostability of apple tree rootstock leaves. Afr J Biotechnol 10:15891–15900. doi:10.5897/AJB11.1710

    CAS  Google Scholar 

  • Brestic M, Zivcak M, Kalaji HM, Allakhverdiev SI, Carpentier R (2012) Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105. doi:10.1016/j.plaphy.2012.05.012

  • Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93

    CAS  Google Scholar 

  • Bunce JA (1981) Comparative responses of leaf conductance to humidity in single attached leaves. J Exp Bot 32:629–634

    Google Scholar 

  • Calatayud A, Roca D, Martínez PF (2006) Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol Biochem 44:564–573

    CAS  PubMed  Google Scholar 

  • Camejo D, Rodriguez P, Morales MA, Dell’Amico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    CAS  PubMed  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2007) Display settings: monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784. doi:10.1093/jxb/erl257

    CAS  PubMed  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    CAS  PubMed  Google Scholar 

  • Chen LS, Cheng L (2009) Photosystem 2 is more tolerant to high temperature in apple (Malus domestica Borkh) leaves than in fruit peel. Photosynthetica 47:112–120

    CAS  Google Scholar 

  • Christen D, Schönmann S, Jermini M, Strasser RJ, Dèfago G (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514

    CAS  Google Scholar 

  • Cornic G, Briantais JM (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during water stress. Planta 183:178–184

    CAS  Google Scholar 

  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem 2 activity during a mild drought. Ann Bot 89:887–894

    CAS  PubMed  Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and environment. Kluwer Academic, Dordrecht

    Google Scholar 

  • Costa ES, Bressan-Smith R, Oliveira JG, Campostrini E, Pimentel C (2002) Photochemical efficiency in bean plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp) during recovery from high temperature stress. Braz J Plant Physiol 14:105–110

    CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435

    CAS  PubMed  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize to heat stress. Plant Physiol 129:1773–1780. doi:http://dx.doi.org/10.1104/pp.002170

    Google Scholar 

  • Czyczyło-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stojałowski S, Myśków B, Milczarski P, Quarrie S (2011) Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet Res 9:291–295. doi:http://dx.doi.org/10.1017/S1479262111000207

  • Danièle C, Omar D, Jean L, Khalfaoui SB (2006) Genotypes variations in fluorescence parameters among closely related groundnut (Arachis hypogaea L.) lines and their potential for drought screening programs. Field Crops Res 96:296–306

    Google Scholar 

  • Dash S, Mohanty N (2001) Evaluation of assays for the analysis of thermo-tolerance and recovery potentials of seedlings of wheat (Triticum aestivum L.) cultivars. J Plant Physiol 158:1153–1165

    CAS  Google Scholar 

  • Datko M, Zivcak M, Brestic M (2008) Proteomic analysis of barley (Hordeum vulgare L.) leaves as affected by high temperature treatment. In: Allen JF, Gantt E, Goldbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plant in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    CAS  Google Scholar 

  • De Carvalho RC, Cunha A, da Silva JM (2011) Photosynthesis by six Portuguese maize cultivars during drought stress and recovery. Acta Physiol Plant 33:359–374

    Google Scholar 

  • De Las Rivas J, Barber J (1997) Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry 36:8897–8903

    PubMed  Google Scholar 

  • De Ronde JA, Cress WA, Kruger GHJ, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gen, during heat and drought stress. J Plant Physiol 161:1211–1224. doi:10.1016/j.jplph.2004.01.014

    PubMed  Google Scholar 

  • Dreyer E, Le Roux X, Montpied P, Daudet FA, Masson F (2001) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol 21:223–232

    CAS  PubMed  Google Scholar 

  • Duysens LMN, Sweers HE (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (ed) Studies on microalgae and photosynthetic bacteria. University of Tokyo Press, Tokyo

    Google Scholar 

  • Efeoglu B, Terzioglu S (2009) Photosynthetic responses of two wheat varieties to high temperature. EurAsia J BioSci 3:97–106. doi:10.5053/ejobios.2009.3.0.13

    Google Scholar 

  • Ehlert B, Hincha DK (2008) Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods 4:12. doi:10.1186/1746-4811-4-12

    PubMed  Google Scholar 

  • Ellenson JL, Amundson RG (1982) Delayed light imaging for the early detection of plant stress. Science 215:1104–1106

    CAS  PubMed  Google Scholar 

  • Elsheery NI, Cao CF (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30:769–777

    CAS  Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach Ps-Ii membranes release of the extrinsic 33 kDa protein or of Mn? Biochim Biophys Acta, Bioenerg 1186:52–58

    CAS  Google Scholar 

  • Epron D, Dreyer E (1990) Stomatal and non stomatal limitation of photosynthesis by leaf water deficits in three oak species: comparison of gas exchange and chlorophyll a fluorescence data. Ann Sci For 47:435–450

    Google Scholar 

  • Falkowski PG, Wyman K, Ley AC, Mauzerall D (1986) Relationship of steady state photosynthesis to fluorescence in eucaryotic algae. Biochim Biophys Acta 849:183–192

    CAS  Google Scholar 

  • Faver KL, Gerik TJ, Thaxton PM, El-Zik KM (1996) Late season water stress in cotton: II: leaf gas exchange and assimilation capacity. Crop Sci 36:922–928

    Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci E (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase activase-mediated activation of Rubisco. Plant Physiol 116:539–546

    CAS  PubMed  Google Scholar 

  • Flagella Z, Pastore D, Campanile RG, Di Fonzo N (1994) Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat (Triticum durum) cultivars. J Agric Sci 122:183–192

    CAS  Google Scholar 

  • Flagella Z, Campanile RG, Stoppelli MC, De Caro A, Di Fonzo N (1998) Drought tolerance of photosynthetic electron transport under CO2 enriched and normal air in cereal species. Physiol Plant 104:753–759

    CAS  Google Scholar 

  • Fracheboud Y, Leipner J (2003) The application of chlorophyll fluorescence to study light, temperature, and drought stress. In: DeEll JR, Toivonen PMA (eds) Practical applications of chlorophyll fluorescence in plant biology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Franck F, Juneau P, Popovic R (2002) Resolution of Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta 162:239–246

    Google Scholar 

  • Froux F, Ducrey M, Epron D, Dreyer E (2004) Seasonal variations and acclimation potential of the thermostability of photochemistry in four Mediterranean conifers. Ann For Sci 61:235–241

    CAS  Google Scholar 

  • Gabris M (2012) The regulation mechanisms in plant water management and the crop productivity in dry conditions. Dissertation, Slovak University of Agriculture

    Google Scholar 

  • Genty B, Briantais JM, Vieira Da Silva JB (1987) Effects of drought on primary photosynthetic processes of cotton leaves. Plant Physiol 83:360–364

    CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Georgieva K, Lichtenthaler HK (1999) Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. J Plant Physiol 155:416–423

    CAS  Google Scholar 

  • Georgieva K, Lichtenthaler HK (2006) Photosynthetic response of different pea cultivars to low and high temperature treatments. Photosynthetica 44:569–578

    CAS  Google Scholar 

  • Georgieva K, Ivanova A, Doncheva S, Petkova S, Stefanov D, Péli E, Tuba Z (2011) Fatty acid content during reconstitution of the photosynthetic apparatus in the air-dried leaves of Xerophyta scabrida after rehydration. Biol Plant 55:581–585

    CAS  Google Scholar 

  • Gholamin R, Khayatnezhad M (2011) The effect of end season drought stress on the chlorophyll content, chlorophyll fluorescence parameters and yield in maize cultivars. Sci Res Essays 25:5351–5357

    Google Scholar 

  • Girardi MT, Cona B, Geiken B, Kucera T, Masojidek J, Matoo AK (1996) Long-term drought stress induces structural and functional reorganization of photosystem II. Planta 199:118–125

    Google Scholar 

  • Gollan Y, Passioura JB, Munns R (1986) Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust J Plant Physiol 48:575–579

    Google Scholar 

  • Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 138:24–35

    CAS  Google Scholar 

  • Grzesiak S, Iijima M, Kono Y, Yamauchi A (1997) Differences in drought tolerance between cultivars of field bean and field pea. A comparison of drought-resistance and drought-sensitive cultivars. Acta Physiol Plant 19:349–357. doi:10.1007/s11738-997-0012-y

    Google Scholar 

  • Guarini JM, Moritz C (2009) Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during Rapid Light Curve experiments. Photosynthetica 47:206–214

    Google Scholar 

  • Guisse B, Srivastava A, Strasser RJ (1995) The polyphasic rise of the chlorophyll a fluorescence (OKJIP) in heat stressed leaves. Arch Sci Geneve 48:147–160

    CAS  Google Scholar 

  • Han F, Chen H, Li X-J, Yang M-F, Liu G-S, Shen S-H (2009) A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta Proteins Proteomics 1794:1625–1634. http://dx.doi.org/10.1016/j.bbapap.2009.07.013

    Google Scholar 

  • Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of Photosystems I and II in pea leaves. Plant Physiol 90:1029–1034

    CAS  PubMed  Google Scholar 

  • Harbinson J, Prinzenberg AE, Kruijer W, Aarts MG (2012) High throughput with chlorophyll fluorescence imaging and its use in crop improvement. Curr Opin Biotechnol 23:221–226

    CAS  PubMed  Google Scholar 

  • Havaux M (1993) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94:19–33

    CAS  Google Scholar 

  • Havaux M (1996) Short-term responses of Photosystem I to heat stress. Induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynth Res 47:85–97

    CAS  Google Scholar 

  • Havaux M, Tardy F (1996) Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta 198:324–333. doi:10.1007/BF00620047

    CAS  Google Scholar 

  • Havaux M, Strasser RJ, Greppin H (1990) In vivo photoregulation of photochemical and non-photochemical deactivation of photosystem II in intact plant leaves. Plant Physiol Biochem 28:735–746

    CAS  Google Scholar 

  • Hermans C, Smeyers M, Rodriguez RM, Eyletters M, Strasser RJ, Delhaye JP (2003) Quality assessment of urban trees: a comparative study of physiological characterisation, airborne imaging and on site fluorescence monitoring by the OJIP-test. J Plant Physiol 160:81–90

    CAS  PubMed  Google Scholar 

  • Herppich WB, Peckmann K (1997) Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of Aptenia cordifolia to short-term drought and rewatering. J Plant Physiol 150:467–474

    CAS  Google Scholar 

  • Hewson I, O’Neil JM, Dennison WC (2001) Virus-like particles associated with Lyngbya majuscula (Cyanophyta; Oscillatoriacea) bloom decline in Moreton Bay. Aquat Microb Ecol 25:207–213

    Google Scholar 

  • Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF (2011) Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta. doi:10.1007/s0042501115443

  • Ierna A (2007) Characterization of potato genotypes by chlorophyll fluorescence during plant aging in a Mediterranean environment. Photosynthetica 45:568–575

    CAS  Google Scholar 

  • Jefferies RA (1994) Drought and chlorophyll fluorescence in field-grown potato (Solanum tuberosum). Physiol Plant 90:93–97

    CAS  Google Scholar 

  • Jiang CD, Shi L, Gao HY, Schansker G, Tóth SZ, Strasser RJ (2006a) Development of photosystems 2 and 1 during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. Photosynthetica 44:454–463

    CAS  Google Scholar 

  • Jiang Q, Roche D, Monaco TA, Durham S (2006b) Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res 96:269–278. doi:10.1016/j.fcr.2005.07.010

    Google Scholar 

  • Kalaji HM, Bosa K, Koscielniak J, Hossain Z (2011) Chlorophyll a fluorescence – a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.). OMICS 15:95–934. doi:10.1089/omi.2011.0070

    Google Scholar 

  • Karim A, Fukamachi H, Hidaka T (2003) Photosynthetic performance of Vigna radiata L. leaves developed at different temperature and irradiance levels. Plant Sci 164:451–458

    CAS  Google Scholar 

  • Kauser R, Athar HUR, Ashraf M (2006) Chlorophyll fluorescence: potential indicator for rapid assessment of water stress tolerance in canola (Brassica napus L.). Pak J Bot 38:1501–1509

    Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensaure assimilation. Naturwissenschaften 19:964

    CAS  Google Scholar 

  • Kebede H, Fisher DK, Young LD (2012) Determination of moisture deficit and heat stress tolerance in corn using physiological measurements and a low-cost microcontroller-based monitoring system. J Agron Crop Sci 198:118–129. doi:10.1111/j.1439-037X.2011.00493.x

    Google Scholar 

  • Kocheva K, Lambrev P, Georgiev G, Goltsev V, Karabaliev M (2004) Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 63:121–124

    CAS  PubMed  Google Scholar 

  • Kolber ZS, Prašil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–110

    CAS  PubMed  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    CAS  PubMed  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    CAS  Google Scholar 

  • Krüger GHJ, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modifications in structure and function of Photosystem II in Camellia leaves. Physiol Plant 101:265–277

    Google Scholar 

  • Kubler JE, Raven J (1996) Nonequilibrium rates of photosynthesis and respiration under dynamic light supply. J Phycol 32:963–969

    Google Scholar 

  • Kuckenberg J, Tartachnyk I, Noga G (2009) Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precision Agric 10:34–44

    Google Scholar 

  • Lal A, Ku MSB, Edwards GE (1996) Analysis of inhibition of photosynthesis due to water-stress in the C3 species Hordeum vulgare and Vicia faba – electron-transport, CO2 fixation and carboxylation capacity. Photosynth Res 49:57–69

    CAS  Google Scholar 

  • Lang M, Lichtenthaler HK, Sowinska M, Heisel F, Miehé JA (1996) Fluorescence imaging of water and temperature stress in plant leaves. J Plant Physiol 148:613–621.

    CAS  Google Scholar 

  • Lauer MJ, Boyer JS (1992) Internal CO2 measured directly in leaves. Plant Physiol 98:1310–1316

    CAS  PubMed  Google Scholar 

  • Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–181

    CAS  PubMed  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: stomatal metabolism and the role of ATP. Ann Hort 89:871–885

    CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    CAS  PubMed  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration processes. Ann Bot 103:561–579

    CAS  PubMed  Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1–28

    PubMed  Google Scholar 

  • Lepedus H, Brkic I, Cesar V, Jurkovic V, Antunovic J, Jambrovic A, Brkic J, Simic D (2012) Chlorophyll fluorescence analysis of photosynthetic performance in seven maize inbred lines under water-limited conditions. Period Biol 114:73–76

    Google Scholar 

  • Li RH, Guo PG, Michael B, Stefania G, Cecceralli S (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China 5(10):751–757

    CAS  Google Scholar 

  • Li QM, Liu BB, Wu Y, Zou ZR (2008) Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. J Integr Plant Biol 50:1307–1317

    PubMed  Google Scholar 

  • Lichtenthaler HK, Babani F (2000) Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Plant Physiol Biochem 38:889–895. doi:http://dx.doi.org/10.1016/S0981-9428(00)01199-2

  • Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus: changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht

    Google Scholar 

  • Lichtenthaler HK, Burkart S (1999) Photosynthesis and high light stress. Bulg J Plant Physiol 25:3–16

    CAS  Google Scholar 

  • Lichtenthaler HK, Miehé JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2:316–320

    Google Scholar 

  • Lichtenthaler HK, Rinderle U (1988) Role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 19(1):29–85

    Google Scholar 

  • Lichtenthaler HK, Buschmann C, Knapp M (2005a) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379–393

    CAS  Google Scholar 

  • Lichtenthaler HK, Langsdorf G, Lenk S, Buschmann C (2005b) Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43:355–369

    CAS  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    CAS  PubMed  Google Scholar 

  • Longenberger PS, Smith CW, Duke SE, McMichael BL (2009) Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. Euphytica 166:25–33

    CAS  Google Scholar 

  • Lu C, Zhang J (1998) Thermostability of photosystem II is increased in salt stressed sorghum. Aust J Plant Physiol 25:317–324. http://dx.doi.org/10.1071/PP97138

    Google Scholar 

  • Luo HB, Ma L, Xi HF, Duan W, Li SH et al (2011) Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLoS One 6:e23033. doi:10.1371/journal.pone.0023033

    CAS  PubMed  Google Scholar 

  • Malkin S, Kok B (1966) Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yields. Biochim Biophys Acta 126:413–432

    CAS  PubMed  Google Scholar 

  • Mamnouie E, Fotouhi GR, Esfahany M, Nakhoda B (2006) The effects of water deficit on crop yield and the physiological characteristics of barley (Hordeum vulgare L.) varieties. J Agric Sci Technol 8:211–219

    Google Scholar 

  • Marler TE, Mickelbart MV (1998) Drought, leaf gas exchange, and chlorophyll fluorescence of field-grown papaya. J Am Soc Hort Sci 123:714–718

    CAS  Google Scholar 

  • Maroco JP, Pereira JS, Chaves MM (1997) Stomatal responses of leaf-to-air vapour pressure deficit in Sahelian species. Aust J Plant Physiol 24:381–387

    Google Scholar 

  • Maroco JP, Rodriges ML, Lopes C, Chaves MM (2002) Limitation to leaf photosynthesis in grapevine under drought – metabolic and modeling approaches. Funct Plant Physiol 29:1–9

    Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46:189–195

    CAS  PubMed  Google Scholar 

  • Mauzerall D (1972) Light-induced changes in Chlorella, and the primary photoreaction for the production of oxygen. Proc Natl Acad Sci 69:1358–1362

    CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905

    CAS  PubMed  Google Scholar 

  • Misra AN, Misra M, Singh R (2012) Chlorophyll fluorescence in plant biology. In Misra AN (ed) Biophysics. InTech, Shanghai

    Google Scholar 

  • Morales SG, Trejo-Téllez LI, Merino FCG, Caldana C, Espinosa-Victoria D, Herrera Cabrera BE (2012) Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. Acta Sci 34:317–324

    CAS  Google Scholar 

  • Morita S, Siratsuchi H, Takanashi J, Fujita K (2004) Effect of high temperature on ripening in rice plant. Analysis of the effect of high night and high day temperature applied to the panicle in other parts of the plant. Jpn J Crop Sci 73:77–83

    Google Scholar 

  • Mott KA, Cardon ZG, Berry JA (1993) Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity. Plant Cell Environ 20:1098–1107

    Google Scholar 

  • Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507. doi:10.1093/jxb/erq199

    CAS  PubMed  Google Scholar 

  • Nash D, Miyao M, Murata N (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta 807:127–133

    CAS  Google Scholar 

  • Nedbal L, Whitmarsh J (2004) Chlorophyll fluorescence imaging of leaves and fruits. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht

    Google Scholar 

  • Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51:1309–1317

    PubMed  Google Scholar 

  • Nyarko G, Alderson PG, Craigon E, Murchie E, Sparkes DL (2008) Comparison of cell membrane thermostability and chlorophyll fluorescence parameters for the determination of heat tolerance in ten cabbage lines. J Hort Sci Biotechnol 83:678–682

    Google Scholar 

  • O’Neill PM, Shanahan JF, Schepers JS (2006) Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions. Crop Sci 46:681–687

    Google Scholar 

  • Olson RJ, Chekalyuk AM, Sosik HM (1996) Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells. Limnol Oceanogr 41:1253–1263

    Google Scholar 

  • Omasa K, Takayama K (2003) Simultaneous measurement of stomatal conductance, non-photochemical quenching, and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging. Plant Cell Physiol 44:1290–1300

    CAS  PubMed  Google Scholar 

  • Omasa K, Shimazaki KI, Aiga I, Larcher W, Onoe M (1987) Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol 84:748–752

    CAS  PubMed  Google Scholar 

  • Oukarroum A, El Madidi S, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60:438–446

    CAS  Google Scholar 

  • Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant 137:188–199

    CAS  PubMed  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – calculation of qP and F v ′/F m ′ without measuring Fo′. Photosynth Res 54:135–142

    CAS  Google Scholar 

  • Oyetunji OJ, Ekanayake IJ, Osonubi O (2007) Chlorophyll fluorescence analysis for assessing water deficit and arbuscular mycorrhizal fungi (AMF) inoculation in cassava (Manihot esculenta Crantz). Adv Biol Res 1:108–117

    Google Scholar 

  • Parry M, Andraloje PJ, Khan S, Lea PJ, Keys A (2002) Rubisco activity: effect of drought stress. Ann Bot 89:833–839

    CAS  PubMed  Google Scholar 

  • Pastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans. 1. Oxygen evolution and chlorophyll fluorescence. Plant Physiol 112:1245–1251

    CAS  PubMed  Google Scholar 

  • Patel PN, Hall AE (1990) Genotypic variation and classification of cowpea for reproductive responses to high temperatures under long photoperiods. Crop Sci 30:614–621

    Google Scholar 

  • Pérez P, Zita G, Morcuende R, Martínez-Carrasco R (2007) Elevated CO2 and temperature differentially affect photosynthesis and resource allocation in flag and penultimate leaves of wheat. Photosynthetica 45:9–17

    Google Scholar 

  • Petkova V, Denev ID, Cholakov D, Porjazov I (2007) Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters. Sci Hort 111:101–106. http://dx.doi.org/10.1016/j.scienta.2006.10.005

  • Pfündel E (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195

    Google Scholar 

  • Pfündel E, Klughammer C, Schreiber U (2008) Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl. Notes 1:21–24

    Google Scholar 

  • Quick WP, Horton P (1984) Studies on the induction of chlorophyll fluorescence in barley protoplasts. II. Resolution of fluorescence quenching by redox state and the trans-thylakoid pH gradient. Philos Trans R Soc Lond B Biol Sci 220:371–382

    CAS  Google Scholar 

  • Rahbarian R, Khavari-Nejad R, Ganjeal A, Bagheri A, Najafi F (2011) Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol Cracov Ser Bot 53:47–56. doi:10.2478/v10182-011-0007-2

    Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curve: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    CAS  Google Scholar 

  • Rathod DP, Brestic M, Shao HB (2011) Chlorophyll a fluorescence determines the drought resistance capabilities in two varieties of mycorrhized and non-mycorrhized Glycine max Linn. Afr J Microb Res 5:4197–4206. doi:10.5897/AJMR11.737

    CAS  Google Scholar 

  • Razavi F, Pollet B, Steppe K, van Labeke MC (2008) Chlorophyll fluorescence as a tool for evaluation of drought stress in strawberry. Photosynthetica 46:631–633. doi:10.1007/s11099-008-0108-7

    CAS  Google Scholar 

  • Rehman H, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Res 85:149–158

    Google Scholar 

  • Repkova J, Brestic M, Zivcak M (2008) Bioindication of barley leaves vulnerability in conditions of water deficit. Cereal Res Commun 36:1747–1750

    CAS  Google Scholar 

  • Robakowski P, Montpied P, Dreyer E (2002) Temperature response of photosynthesis of silver fir (Abies alba Mill.) seedlings. Ann For Sci 59:159–166

    Google Scholar 

  • Rohacek K, Soukupova J, Bartak M (2008) Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. In: Schoefs B (ed) Plant cell compartments – selected topics. Research Signpost, Trivandrum

    Google Scholar 

  • Rolfe SA, Scholes JD (1995) Quantitative imaging of chlorophyll fluorescence. New Phytol 131:69–79

    Google Scholar 

  • Roostaei M, Mohammadi SA, Amri A, Majidi E, Nachit M, Haghparast R (2011) Chlorophyll fluorescence parameters and drought tolerance in a mapping population of winter bread wheat in the highlands of Iran. Russ J Plant Physiol 58:351–358. doi:http://dx.doi.org/10.1134/S102144371102018X

  • Rosenqvist E, van Kooten O (2003) Chlorophyll fluorescence: a general description and nomenclature. In: DeEll JR, Toivonen PMA (eds) Practical applications of chlorophyll fluorescence in plant biology. Kluwer Academic Publishers, Dordrecht, pp 31–78

    Google Scholar 

  • Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth Res 99:173–183

    CAS  PubMed  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PS I during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    CAS  PubMed  Google Scholar 

  • Saito Y, Saito R, Nomura E, Kawahara TD, Nomura A, Takaragaki S, Ida K, Takeda S (1999) Performance check of vegetation fluorescence imaging lidar through in vivo and remote estimation of chlorophyll concentration inside plant leaves. Optical Rev 6:155–159

    Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    CAS  PubMed  Google Scholar 

  • Santos MG, Ribeiro RV, Machado EC, Pimentel C (2009) Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. Biol Plant 53:229–236

    CAS  Google Scholar 

  • Sarieva GE, Kenzhebaeva SS, Lichtenthaler HK (2010) Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions. Russ J Plant Physiol 57:28–36

    CAS  Google Scholar 

  • Sayar R, Khemira H, Kameli A, Mosbahi M (2008) Physiological tests as predictive appreciations for drought tolerance in durum wheat (Triticum durum Desf.). Agron Res 6:79–90

    Google Scholar 

  • Sayed OH (2003) Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41:321–330

    CAS  Google Scholar 

  • Sazanov LA, Burrows PA, Nixon PJ (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Lett 429:115–118

    CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    CAS  PubMed  Google Scholar 

  • Schapendonk AHC, Spitters CJT, Groot PJ (1989) Effects of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivars. Potato Res 32:17–32

    Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735

    CAS  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht

    Google Scholar 

  • Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238

    CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    CAS  Google Scholar 

  • Schreiber U, Gademann R, Ralph PJ, Larkum AWD (1997) Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol 38:945–951

    CAS  Google Scholar 

  • Seddon S, Cheshire AC (2001) Photosynthetic response of Amphibolis antarctica and Posidonia australis to temperature and desiccation using chlorophyll fluorescence. Mar Ecol Progr Ser 220:119–130

    CAS  Google Scholar 

  • Shabala SI (2002) Screening plants for environmental fitness: chlorophyll fluorescence as a “Holy Grail” for plant breeders. In: Hemantaranjan A (ed) Advances in plant physiology, vol 5. Scientific Publishers, Jodhpur

    Google Scholar 

  • Sharkey TD, Seeman JR (1989) Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiol 89:1060–1065

    CAS  PubMed  Google Scholar 

  • Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52:712–722. doi:10.1111/j.1744-7909.2010.00975.x

    CAS  PubMed  Google Scholar 

  • Sharkova VE (2001) The effect of heat shock on the capacity of wheat plants to restore their photosynthetic electron transport after photoinhibition or repeated heating. Russ J Plant Physiol 48:793–797

    CAS  Google Scholar 

  • Shefazadeh MK, Mohammadi M, Karimizadeh R (2012) Genotypic difference for heat tolerance traits under real field conditions. J Food Agric Environ 10:484–487

    Google Scholar 

  • Sheikh S, Behl RK, Dhand SS, Munjal R (2010) Membrane thermostability and chlorophyll fluorescence as indices of high temperature stress tolerance and performance in wheat (Triticum aestivum L.). Cereal Res Commun 38:335–344. doi:10.1556/CRC.38.2010.3.4

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    CAS  PubMed  Google Scholar 

  • Siddique KHM, Loss SP, Regan KL, Jettner RL (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust J Agric Res 50:375–387

    Google Scholar 

  • Sikuku PA, Netondo GW, Onyango JC, Musyimi DM (2010) Chlorophyll fluorescence, protein and chlorophyll content of three NERICA rainfed rice varieties under varying irrigation regimes. ARPN J Agric Biol Sci 5:19–25

    Google Scholar 

  • Silim SN, Ryan N, Kubien DS (2010) Temperature responses of photosynthesis and respiration in Populus balsamifera L.: acclimation versus adaptation. Photosynth Res 104:19–30. doi:10.1007/s11120-010-9527-y

    Google Scholar 

  • Sinsawat V, Leipner J, Stamp P, Fracheboud Y (2004) Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot 52:123–129

    CAS  Google Scholar 

  • Slabbert RM, Krüger GHJ (2011) Assessment of changes in photosystem II structure and function as affected by water deficit in Amaranthus hypochondriacus L. and Amaranthus hybridus L. Plant Physiol Biochem 49:978–984. doi:10.1016/j.plaphy.2011.05.001

    CAS  PubMed  Google Scholar 

  • Slapakauskas V, Ruzgas V (2005) Chlorophyll fluorescence characteristics of different winter wheat varieties (Triticum aestivum L.). Agron J 32:203–209

    Google Scholar 

  • Smillie RM, Gibbons GC (1981) Heat tolerance and hardening in crop plants measured by chlorophyll fluorescence. Carlberg Res Commun 46:395–403. doi:10.1007/BF02907961

    Google Scholar 

  • Srinivasan A, Takeda H, Senboku T (1996) Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica 88:35–45. doi:10.1007/BF00029263

    Google Scholar 

  • Srivastava A, Greppin H, Strasser RJ (1995) Acclimation of land plants to diurnal changes in temperature and light. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic, Dordrecht

    Google Scholar 

  • Srivastava B, Guisse H, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106

    CAS  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    CAS  PubMed  Google Scholar 

  • Stone PJ, Nicolas ME (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Aust J Plant Physiol 21:887–900

    Google Scholar 

  • Strasser, RJ (1987) Energy pipeline model of the photosynthetic apparatus. In: Biggins J (ed) Progress in Photosynthesis Research, 2:717–720. Martinus Nijhoff Publisher, Dordrecht

    Google Scholar 

  • Strasser RJ, Eggenberg P, Strasser BJ (1996) How to work without stress but with fluorescence. Bull Royal Soc Liege 65:330–349

    Google Scholar 

  • Strasser RJ, Govindjee (1991) The Fo and the OJIP fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, New York

    Google Scholar 

  • Strasser RJ, Govindjee (1992) On the OJIP fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in photosynthesis, vol II. Kluwer Academic, Dordrecht

    Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic, Dordrecht, pp 977–980

    Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor & Francis, London

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2004) Analysis of the chlorophyll a fluorescence transient, advances in photosynthesis and respiration. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Kluwer Academic, Dordrecht

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326

    CAS  PubMed  Google Scholar 

  • Subrahmanyam D, Subash N, Haris A et al (2006) Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica 44:125–129. doi:10.1007/s11099-005-0167-y

    CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CHL (2003) Acquired tolerance to environmental extremes. Trends Plant Sci 8:179–187. doi:10.1016/S1360-1385(03)7-5

    CAS  PubMed  Google Scholar 

  • Tang AC, Kawamitsu Y, Kanechi M, Boyer JS (2002) Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Ann Bot 89:861–870

    PubMed  Google Scholar 

  • Tari I, Camen D, Coradini G, Csiszar J, Fediuc E, Gemes K, Lazar A, Madosa E, Mihacea S, Poor P, Postelnicu S, Staicu M, Szepesi A, Nedelea G (2008) Changes in chlorophyll fluorescence parameters and oxidative stress responses of bush bean genotypes for selecting contrasting acclimation strategies under water stress. Acta Biol Hung 59:335–345

    PubMed  Google Scholar 

  • Terzi R, Saglam A, Kutlu N, Nar H, Kadioglu A (2010) Impact of soil drought stress on photochemical efficiency of photosystem II and antioxidant enzyme activities of Phaseolus vulgaris cultivars. Turk J Bot 34:1–10. doi:10.3906/bot-0905-20

    CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 12(327):818–822

    Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factors and ATP. Nature 401:914–917

    CAS  Google Scholar 

  • Thompson LM (1988) Effects of changes in climate and weather variability on the yields of corn and soybean. J Prod Agric 1:20–27

    Google Scholar 

  • Toth SZ, Schansker G, Kissimon J, Kovacs L, Garab G, Strasser RJ (2005) Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J Plant Physiol 162:181–194

    CAS  PubMed  Google Scholar 

  • Toth SZ, Schansker G, Strasser RJ (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203

    CAS  PubMed  Google Scholar 

  • Van der Meescht, de Ronde JA, Rossouw FT (1999) Chlorophyll fluorescence and chlorophyll content as a measure of drought tolerance in potato. S Afr J Sci 95:407–411

    Google Scholar 

  • Van Gorkom HJ (1986) Fluorescence measurements in the study of photosystem II electron transport. In: Amesz J, Fork DC, Govindjee (eds) Light emission by plants and bacteria. Academic, Orlando

    Google Scholar 

  • Van Heerden PDR, Swanepoel JW, Krüger GHJ (2007) Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environ Exp Bot 61:124–136

    Google Scholar 

  • Vara Prasad PV, Craufurd PQ, Summerfield RJ (1999) Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann Bot 84:381–386

    Google Scholar 

  • Vassileva V, Demirevska K, Simova-Stoilova L, Petrova T, Tsenov N, Feller U (2012) Long-term field drought affects leaf protein pattern and chloroplast ultrastructure of winter wheat in a cultivar-specific manner. J Agron Crop Sci 198:104–117

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. doi:10.1016/j.envexpbot.2007.05.011

    Google Scholar 

  • Weng JH, Lai MF (2005) Estimating heat tolerance among plant species by two chlorophyll fluorescence parameters. Photosynthetica 43:439–444. doi:10.1007/s11099-005-0070-6

    CAS  Google Scholar 

  • West JD, Peak D, Peterson JQ et al (2005) Dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves observed with fluorescence and thermal images. Plant Cell Environ 28:633–641

    Google Scholar 

  • White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63–72

    CAS  Google Scholar 

  • Wing SR, Patterson MR (1993) Effects of wave-induced light flecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile (Phaeophyceae). Mar Biol 116:519–552

    Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724. doi:10.1111/j.1365-3040.2004.01171.x

    CAS  Google Scholar 

  • Wu XL, Bao WK (2011) Effect of water deficit on growth and photosynthetic characteristics of 13 winter wheat. Afr J Biotechnol 10:11861–11869

    CAS  Google Scholar 

  • Xu XL, Wang ZM, Zhang JP (2001) Effect of heat stress on photosynthetic characteristics of different green organs of winter wheat during grain-filling stage. Acta Bot Sin 43:571–577

    CAS  Google Scholar 

  • Xu F, Guo WH, Wang RQ, Xu WH, Du N, Wang YF (2009) Leaf movement and photosynthetic plasticity of black locust (Robinia pseudoacacia) alleviate stress under different light and water conditions. Acta Physiol Plant 31:553–563

    CAS  Google Scholar 

  • Yamada M, Hidaka T, Fukamachi H (1996) Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci Hortic 67:39–48

    CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high temperature treatment in higher plants. Photosynth Res 52:57–64

    CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1998) Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res 57:51–59

    CAS  Google Scholar 

  • Yang X, Chen X, Ge Q, Li B, Tong Y, Zhang A, Li Z, Kuang T, Lu C (2006) Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci 171:389–397

    CAS  PubMed  Google Scholar 

  • Yang X, Chen X, Qiaoying G, Li B, Tong Y, Li Z, Kuang T, Lu C (2007) Characterisation of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. J Plant Physiol 164:318–326

    CAS  PubMed  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2003) Plant responses to drought and stress tolerance. Bulg J Plant Physiol. Special Issue 187–206

    Google Scholar 

  • Zarco-Tejada PJ, Berni JAJ, Suárez L, Sepulcre-Cantó G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens Environ 113:1262–1275

    Google Scholar 

  • Zegada-Lizarazu W, Zatta A, Monti A (2012) Water uptake efficiency and above- and belowground biomass development of sweet sorghum and maize under different water regimes. Plant Soil 351:47–60. doi:10.1007/s11104-011-0928-2

    CAS  Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43. doi:10.1007/s11120-009-9420-8

    CAS  PubMed  Google Scholar 

  • Zhang ZB, Xu P, Jia JZ, Zhou RH (2010) Quantitative trait loci for leaf chlorophyll fluorescence trait in wheat. Aust J Crop Sci 4:571–579

    Google Scholar 

  • Zhang ST, Zhang GL, Chen LY, Xiao YH (2011a) Effects of high temperature stress on net photosynthetic rate and chlorophyll fluorescence parameters of flag leaf in rice. Chin J Rice Sci 25:335–338. doi:CNKI:SUN:ZGSK.0.2011-03-017

    CAS  Google Scholar 

  • Zhang YL, Hu YY, Luo HH, Chow WS, Zhang WF (2011b) Two distinct strategies of cotton and soybean differing in leaf movement to perform photosynthesis under drought in the field. Funct Plant Biol 38:567–575. http://dx.doi.org/10.1071/FP11065

    Google Scholar 

  • Zivcak M (2006) Application of physiological reaction diversity in screening of wheat genotypes for drought and high temperature tolerance. Dissertation, Slovak University of Agriculture

    Google Scholar 

  • Zivcak M, Brestic M, Olsovska K, Slamka P (2008a) Performance index as a sensitive indicator of water stress in Triticum aestivum. Plant Soil Environ 54:133–139

    Google Scholar 

  • Zivcak M, Brestic M, Olsovska K (2008b) Application of photosynthetic parameters in screening of wheat (Triticum aestivum L.) genotypes for improved drought and high temperature tolerance. In: Allen JF, Gantt E, Goldbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Zivcak M, Brestic M, Olsovska K (2008c) Physiological parameters useful in screening for improved tolerance to drought in winter wheat (Triticum aestivum L.). Cereal Res Commun 36:1943–1946

    Google Scholar 

  • Zivcak M, Brestic M, Olsovska K (2009) Application of chlorophyll fluorescence for screening wheat (Triticum aestivum L.) genotype susceptibility to drought and high temperature. Vagos 82:82–87

    Google Scholar 

  • Zivcak M, Olsovska K, Brestic M, Slabbert MM (2013) Critical temperature derived from the selected chlorophyll a fluorescence parameters of indigenous vegetable species of South Africa treated with high temperature. In: C. Lu (ed) Photosynthesis: Research for Food, Fuel and Future–15th International Conference on Photosynthesis, Zhejiang University Press, Springer-Verlag GmbH., in press.

    Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57–72

    Google Scholar 

  • Zlatev ZS, Yordanov IT (2004) Effect of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg J Plant Physiol 30:3–18

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Brestic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Brestic, M., Zivcak, M. (2013). PSII Fluorescence Techniques for Measurement of Drought and High Temperature Stress Signal in Crop Plants: Protocols and Applications. In: Rout, G., Das, A. (eds) Molecular Stress Physiology of Plants. Springer, India. https://doi.org/10.1007/978-81-322-0807-5_4

Download citation

Publish with us

Policies and ethics