Skip to main content

Krüppel-like Factor Proteins and Chromatin Dynamics

  • Chapter
The Biology of Krüppel-like Factors

Abstract

Krüppel-like factors (KLFs) are transcription regulatory proteins. Members of this protein family are characterized by a highly conserved C-terminus that has three zinc finger domains that bind to GC-rich sequences in DNA. The N-terminal domains of these proteins contain regulatory regions that can activate or repress transcription in a context-specific manner. KLFs interact with a wide range of co-activators or co-repressors to accomplish their transcription regulatory function. These interactions provide a complex stage for the chromatin dynamics to unfold and regulate diverse biological functions. This chapter focuses on expanding our understanding of molecular mechanisms of transcription regulation by KLFs and their impact on chromatin dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelrahim, M., R. Smith, 3rd, et al. (2004). “Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells.” Cancer Research 64(18):6740–9.

    Article  PubMed  CAS  Google Scholar 

  • Ayer, D. E., Q. A. Lawrence, et al. (1995). “Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3.” Cell 80(5):767–76.

    Article  PubMed  CAS  Google Scholar 

  • Bieker, J. J. (2001). “Kruppel-like factors: three fingers in many pies.” J Biol Chem 276(37):34355–8.

    Article  PubMed  CAS  Google Scholar 

  • Black, A. R., J. D. Black, et al. (2001). “Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer.” Journal of Cellular Physiology 188(2):143–60.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, J. M., T. Subramanian, et al. (1993). “A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis.” Embo J 12(2):469–78.

    PubMed  CAS  Google Scholar 

  • Brown, J. L., D. J. Grau, et al. (2005). “An Sp1/KLF binding site is important for the activity of a Polycomb group response element from the Drosophila engrailed gene.” Nucleic Acids Res 33(16):5181–9.

    Article  PubMed  CAS  Google Scholar 

  • Brubaker, K., S. M. Cowley, et al. (2000). “Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex.” Cell 103(4):655–65.

    Article  PubMed  CAS  Google Scholar 

  • Buttar, N. S., M. E. Fernandez-Zapico, et al. (2006). “Key role of Kruppel-like factor proteins in pancreatic cancer and other gastrointestinal neoplasias.” Current Opinion in Gastroenterology 22(5):505–11.

    Article  PubMed  CAS  Google Scholar 

  • Cao, S., M. E. Fernandez-Zapico, et al. (2005). “KLF11-mediated repression antagonizes Sp1/ sterol-responsive element-binding protein-induced transcriptional activation of caveolin-1 in response to cholesterol signaling.” J Biol Chem 280(3):1901–10.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, C. M., B. T. Endrizzi, et al. (2006). “Kruppel-like factor 2 regulates thymocyte and T-cell migration.” Nature 442(7100):299–302.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., R. J. Lin, et al. (1999). “Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase.” Cell 98(5):675–86.

    Article  PubMed  CAS  Google Scholar 

  • Cook, T., B. Gebelein, et al. (1999). “Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins.” J Biol Chem 274(41):29500–4.

    Article  PubMed  CAS  Google Scholar 

  • Cook, T., B. Gebelein, et al. (1998). “Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth.” J Biol Chem 273(40):25929–36.

    Article  PubMed  CAS  Google Scholar 

  • Cook, T. and R. Urrutia (2000). “TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth.” Am J Physiol Gastrointest Liver Physiol 278(4):G513–21.

    PubMed  CAS  Google Scholar 

  • Crossley, M., E. Whitelaw, et al. (1996). “Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells.” Mol Cell Biol 16(4):1695–705.

    PubMed  CAS  Google Scholar 

  • Drissen, R., M. von Lindern, et al. (2005). “The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability.” Mol Cell Biol 25(12):5205–14.

    Article  PubMed  CAS  Google Scholar 

  • Du, X., P. Hublitz, et al. (2002). “The LIM-only coactivator FHL2 modulates WT1 transcriptional activity during gonadal differentiation.” Biochim Biophys Acta 1577(1):93–101.

    PubMed  CAS  Google Scholar 

  • Eaton, S. A., A. P. Funnell, et al. (2008). “A network of Kruppel-like Factors (Klfs). Klf8 is repressed by Klf3 and activated by Klf1 in vivo.” J Biol Chem 283(40):26937–47.

    Article  PubMed  CAS  Google Scholar 

  • Eilers, A. L., A. N. Billin, et al. (1999). “A 13-amino acid amphipathic alpha-helix is required for the functional interaction between the transcriptional repressor Mad1 and mSin3A.” J Biol Chem 274(46):32750–6.

    Article  PubMed  CAS  Google Scholar 

  • Ellenrieder, V., J. S. Zhang, et al. (2002). “Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor.” Embo J 21(10):2451–60.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, M. W., Z. Cao, et al. (2005). “Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages.” Journal of Biological Chemistry 280(46):38247–58.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Zapico, M. E., A. Mladek, et al. (2003). “An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation.” Embo J 22(18):4748–58.

    Article  PubMed  CAS  Google Scholar 

  • Funnell, A. P., C. A. Maloney, et al. (2007). “Erythroid Kruppel-like factor directly activates the basic Kruppel-like factor gene in erythroid cells.” Mol Cell Biol 27(7):2777–90.

    Article  PubMed  CAS  Google Scholar 

  • Geiman, D. E., H. Ton-That, et al. (2000). “Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction.” Nucleic Acids Res 28(5):1106–13.

    Article  PubMed  CAS  Google Scholar 

  • Gill, G., E. Pascal, et al. (1994). “A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation.” Proc Natl Acad Sci U S A 91(1):192–6.

    Article  PubMed  CAS  Google Scholar 

  • Gu, J., R. M. Rubin, et al. (2001). “A sequence element of p53 that determines its susceptibility to viral oncoprotein-targeted degradation.” Oncogene 20(27):3519–27.

    Article  PubMed  CAS  Google Scholar 

  • Hagen, G., J. Dennig, et al. (1995). “Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3.” J Biol Chem 270(42):24989–94.

    Article  PubMed  CAS  Google Scholar 

  • Halleck, M. S., S. Pownall, et al. (1995). “A widely distributed putative mammalian transcrip-tional regulator containing multiple paired amphipathic helices, with similarity to yeast SIN3.” Genomics 26(2):403–6.

    Article  PubMed  CAS  Google Scholar 

  • Hassig, C. A., T. C. Fleischer, et al. (1997). “Histone deacetylase activity is required for full transcriptional repression by mSin3A.” Cell 89(3):341–7.

    Article  PubMed  CAS  Google Scholar 

  • Imataka, H., K. Sogawa, et al. (1992). “Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene.” Embo J 11(10):3663–71.

    PubMed  CAS  Google Scholar 

  • Imhof, A., M. Schuierer, et al. (1999). “Transcriptional regulation of the AP-2alpha promoter by BTEB-1 and AP-2rep, a novel wt-1/egr-related zinc finger repressor.” Mol Cell Biol 19(1):194–204.

    PubMed  CAS  Google Scholar 

  • Kaczynski, J., T. Cook, et al. (2003). “Sp1- and Kruppel-like transcription factors.” Genome Biol 4(2):206.

    Article  PubMed  Google Scholar 

  • Kaczynski, J., J. S. Zhang, et al. (2001). “The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1.” J Biol Chem 276(39):36749–56.

    Article  PubMed  CAS  Google Scholar 

  • Kaczynski, J. A., A. A. Conley, et al. (2002). “Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter.” Biochem J 366(Pt 3):873–82.

    PubMed  CAS  Google Scholar 

  • Kadosh, D. and K. Struhl (1998). “Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo.” Genes Dev 12(6):797–805.

    Article  PubMed  CAS  Google Scholar 

  • Kasten, M. M., S. Dorland, et al. (1997). “A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators.” Mol Cell Biol 17(8):4852–8.

    PubMed  CAS  Google Scholar 

  • Kingsley, C. and A. Winoto (1992). “Cloning of GT box-binding proteins: a novel Sp1 multigene family regulating T-cell receptor gene expression.” Mol Cell Biol 12(10):4251–61.

    PubMed  CAS  Google Scholar 

  • Koipally, J. and K. Georgopoulos (2000). “Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity.” J Biol Chem 275(26):19594–602.

    Article  PubMed  CAS  Google Scholar 

  • Laherty, C. D., H. M. Hu, et al. (1992). “The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B.” Journal of Biological Chemistry 267(34):24157–60.

    PubMed  CAS  Google Scholar 

  • Lin, Z., A. Kumar, et al. (2005). “Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function.” Circulation Research 96(5):e48–57.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C., A. Calogero, et al. (1996). “EGR-1, the reluctant suppression factor: EGR-1 is known to function in the regulation of growth, differentiation, and also has significant tumor suppressor activity and a mechanism involving the induction of TGF-beta1 is postulated to account for this suppressor activity.” Crit Rev Oncog 7(1–2):101–25.

    PubMed  CAS  Google Scholar 

  • Lomberk, G., S. Ilyas, et al. (2008a). “KLF11 Complexes With the Epigenetic Gene Silencer Protein, HP1 to Mediate Tumor Suppressor Activities..” Pancreas 37(4):481.

    Google Scholar 

  • Lomberk, G. and R. Urrutia (2005). “The family feud: turning off Sp1 by Sp1-like KLF proteins.” Biochem J 392(Pt 1):1–11.

    Article  PubMed  CAS  Google Scholar 

  • Lomberk, G., L. Wallrath, et al. (2006). “The Heterochromatin Protein 1 family.” Genome Biol 7(7):228.

    Article  PubMed  Google Scholar 

  • Lomberk, G., J. Zhang, et al. (2008b). “ A New Molecular Model for Regulating the TGFβ Receptor II Promoter in Pancreatic Cells..” Pancreas 36(2):223.

    Article  Google Scholar 

  • Marin, M., A. Karis, et al. (1997). “Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation.” Cell 89(4):619–28.

    Article  PubMed  CAS  Google Scholar 

  • Mathison, A., G. Lomberk, et al. (2008). “ The Gβ Subunit of Heterotrimeric G Proteins Links Pancreatic PCR Activation To Long Term Responses..” Pancreas. 37:484.

    Google Scholar 

  • Matsumoto, N., F. Laub, et al. (1998). “Cloning the cDNA for a new human zinc finger protein defines a group of closely related Kruppel-like transcription factors.” J Biol Chem 273(43):28229–37.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, T., T. Suzuki, et al. (2005). “The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Kruppel-like factor 5 through direct interaction.” J Biol Chem 280(13):12123–9.

    Article  PubMed  CAS  Google Scholar 

  • McLoughlin, P., E. Ehler, et al. (2002). “The LIM-only protein DRAL/FHL2 interacts with and is a corepressor for the promyelocytic leukemia zinc finger protein.” J Biol Chem 277(40):37045–53.

    Article  PubMed  CAS  Google Scholar 

  • Meloni, A. R., E. J. Smith, et al. (1999). “A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor.” Proc Natl Acad Sci U S A 96(17):9574–9.

    Article  PubMed  CAS  Google Scholar 

  • Muller, H. J., C. Skerka, et al. (1991). “Clone pAT 133 identifies a gene that encodes another human member of a class of growth factor-induced genes with almost identical zinc-finger domains.” Proceedings of the National Academy of Sciences of the United States of America 88(22):10079–83.

    Article  PubMed  CAS  Google Scholar 

  • Neve, B., M. E. Fernandez-Zapico, et al. (2005). “Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function.” Proc Natl Acad Sci U S A 102(13):4807–12.

    Article  PubMed  CAS  Google Scholar 

  • Nibu, Y., H. Zhang, et al. (1998a). “dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo.” Embo J 17(23):7009–20.

    Article  CAS  Google Scholar 

  • Nibu, Y., H. Zhang, et al. (1998b). “Interaction of short-range repressors with Drosophila CtBP in the embryo.” Science 280(5360):101–4.

    Article  CAS  Google Scholar 

  • Nielsen, S. J., M. Praestegaard, et al. (1998). “Different Sp1 family members differentially affect transcription from the human elongation factor 1 A-1 gene promoter.” Biochem J 333 (Pt 3):511–7.

    PubMed  CAS  Google Scholar 

  • Pandya, K. and T. M. Townes (2002). “Basic residues within the Kruppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1.” J Biol Chem 277(18):16304–12.

    Article  PubMed  CAS  Google Scholar 

  • Pang, Y. P., G. A. Kumar, et al. (2003). “Differential binding of Sin3 interacting repressor domains to the PAH2 domain of Sin3A.” FEBS Lett 548(1–3):108–12.

    Article  PubMed  CAS  Google Scholar 

  • Phippen, T. M., A. L. Sweigart, et al. (2000). “Drosophila C-terminal binding protein functions as a context-dependent transcriptional co-factor and interferes with both mad and groucho transcriptional repression.” J Biol Chem 275(48):37628–37.

    Article  PubMed  CAS  Google Scholar 

  • Poortinga, G., M. Watanabe, et al. (1998). “Drosophila CtBP: a Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression.” Embo J 17(7):2067–78.

    Article  PubMed  CAS  Google Scholar 

  • Postigo, A. A. and D. C. Dean (1999). “ZEB represses transcription through interaction with the corepressor CtBP.” Proceedings of the National Academy of Sciences of the United States of America 96(12):6683–8.

    Article  PubMed  CAS  Google Scholar 

  • Ratziu, V., A. Lalazar, et al. (1998). “Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis.” Proc Natl Acad Sci U S A 95(16):9500–5.

    Article  PubMed  CAS  Google Scholar 

  • Roth, C., M. Schuierer, et al. (2000). “Genomic structure and DNA binding properties of the human zinc finger transcriptional repressor AP-2rep (KLF12).” Genomics 63(3):384–90.

    Article  PubMed  CAS  Google Scholar 

  • Safe, S. and M. Abdelrahim (2005). “Sp transcription factor family and its role in cancer.” European Journal of Cancer 41(16):2438–48.

    Article  PubMed  CAS  Google Scholar 

  • Schaeper, U., J. M. Boyd, et al. (1995). “Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation.” Proc Natl Acad Sci U S A 92(23):10467–71.

    Article  PubMed  CAS  Google Scholar 

  • Schuierer, M., K. Hilger-Eversheim, et al. (2001). “Induction of AP-2alpha expression by adenoviral infection involves inactivation of the AP-2rep transcriptional corepressor CtBP1.” J Biol Chem 276(30):27944–9.

    Article  PubMed  CAS  Google Scholar 

  • SenBanerjee, S., Z. Lin, et al. (2004). “KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation.” J Exp Med 199(10):1305–15.

    Article  PubMed  CAS  Google Scholar 

  • Sewalt, R. G., M. J. Gunster, et al. (1999). “C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins.” Mol Cell Biol 19(1):777–87.

    PubMed  CAS  Google Scholar 

  • Shields, J. M. and V. W. Yang (1997). “Two potent nuclear localization signals in the gut-enriched Kruppel-like factor define a subfamily of closely related Kruppel proteins.” J Biol Chem 272(29):18504–7.

    Article  PubMed  CAS  Google Scholar 

  • Shields, J. M. and V. W. Yang (1998). “Identification of the DNA sequence that interacts with the gut-enriched Kruppel-like factor.” Nucleic Acids Res 26(3):796–802.

    Article  PubMed  CAS  Google Scholar 

  • Sogawa, K., Y. Kikuchi, et al. (1993). “Comparison of DNA-binding properties between BTEB and Sp1.” J Biochem (Tokyo) 114(4):605–9.

    CAS  Google Scholar 

  • Sommer, A., S. Hilfenhaus, et al. (1997). “Cell growth inhibition by the Mad/Max complex through recruitment of histone deacetylase activity.” Curr Biol 7(6):357–65.

    Article  PubMed  CAS  Google Scholar 

  • Song, C. Z., K. Keller, et al. (2003). “Functional interplay between CBP and PCAF in acetylation and regulation of transcription factor KLF13 activity.” J Mol Biol 329(2):207–15.

    Article  PubMed  CAS  Google Scholar 

  • Song, C. Z., K. Keller, et al. (2002). “Functional interaction between coactivators CBP/p300, PCAF, and transcription factor FKLF2.” J Biol Chem 277(9):7029–36.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam, M., J. R. Hawse, et al. (2007). “Role of TIEG1 in biological processes and disease states.” J Cell Biochem.

    Google Scholar 

  • Sundqvist, A., K. Sollerbrant, et al. (1998). “The carboxy-terminal region of adenovirus E1A activates transcription through targeting of a C-terminal binding protein-histone deacetylase complex.” FEBS Lett 429(2):183–8.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, I., M. Imoto, et al. (1997). “Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells.” Journal of Clinical Investigation 99(10):2365–74.

    Article  PubMed  CAS  Google Scholar 

  • Thiesen, H. J. (1990). “Multiple genes encoding zinc finger domains are expressed in human T cells.” New Biologist 2(4):363–74.

    PubMed  CAS  Google Scholar 

  • Truty, M., G. Lomberk, et al. (2008). “Silencing of the TGFbeta receptor II by kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling..” J Biol Chem Dec 15. [Epub ahead of print].

    Google Scholar 

  • Turner, J. and M. Crossley (1998). “Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators.” Embo J 17(17):5129–40.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J. and M. Crossley (1999). “Mammalian Kruppel-like transcription factors: more than just a pretty finger.” Trends Biochem Sci 24(6):236–40.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J., H. Nicholas, et al. (2003). “The LIM protein FHL3 binds basic Kruppel-like factor/ Kruppel-like factor 3 and its co-repressor C-terminal-binding protein 2.” J Biol Chem 278(15):12786–95.

    Article  PubMed  CAS  Google Scholar 

  • van den Ent, F. M., A. J. van Wijnen, et al. (1993). “Concerted control of multiple histone promoter factors during cell density inhibition of proliferation in osteosarcoma cells: reciprocal regulation of cell cycle-controlled and bone-related genes.” Cancer Research 53(10 Suppl):2399–409.

    PubMed  Google Scholar 

  • van Vliet, J., J. Turner, et al. (2000). “Human Krüppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription.” Nucleic Acids Res 1;28(9):1955–62.

    Article  Google Scholar 

  • Vidal, M., R. Strich, et al. (1991). “RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes.” Mol Cell Biol 11(12):6306–16.

    PubMed  CAS  Google Scholar 

  • Vo, N. and R. H. Goodman (2001). “CREB-binding protein and p300 in transcriptional regulation.” J Biol Chem 276(17):13505–8.

    PubMed  CAS  Google Scholar 

  • Wang, H., I. Clark, et al. (1990). “The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs.” Mol Cell Biol 10(11):5927–36.

    PubMed  CAS  Google Scholar 

  • Wang, Z., B. Spittau, et al. (2007). “Human TIEG2/KLF11 induces oligodendroglial cell death by downregulation of Bcl-X(L) expression.” J Neural Transm 114(7):867–75.

    Article  PubMed  CAS  Google Scholar 

  • Washburn, B. K. and R. E. Esposito (2001). “Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast.” Mol Cell Biol 21(6):2057–69.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, G., C. Albanese, et al. (1998). “Inhibition of cyclin D1 kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1.” Molecular & Cellular Biology 18(6):3212–22.

    CAS  Google Scholar 

  • Yang, X. J. (2004). “Lysine acetylation and the bromodomain: a new partnership for signaling.” Bioessays 26(10):1076–87.

    Article  PubMed  CAS  Google Scholar 

  • Yochum, G. S. and D. E. Ayer (2001). “Pf1, a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex.” Mol Cell Biol 21(13):4110–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., G. Lomberk, et al. (2007). “The Gb Subunit of Heterotrimeric G Proteins Links GPCR Activation With Transcriptional Regulation by KLF11, a Pancreatic Tumor Suppressor and a Diabetes Gene.” Gastroenterology 132(4 Suppl 2).

    Google Scholar 

  • Zhang, J. S., M. C. Moncrieffe, et al. (2001a). “A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A.” Mol Cell Biol 21(15):5041–9.

    Article  CAS  Google Scholar 

  • Zhang, W., S. Kadam, et al. (2001b). “Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI-SNF complex.” Mol Cell Biol 21(7):2413–22.

    Article  CAS  Google Scholar 

  • Zhang, Y., R. Iratni, et al. (1997). “Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex.” Cell 89(3):357–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Buttar, N.S., Lomberk, G.A., Daftary, G.S., Urrutia, R.A. (2009). Krüppel-like Factor Proteins and Chromatin Dynamics. In: Nagai, R., Friedman, S.L., Kasuga, M. (eds) The Biology of Krüppel-like Factors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87775-2_3

Download citation

Publish with us

Policies and ethics