Skip to main content

Molecular Biology of Allergens: Structure and Immune Recognition

  • Chapter
Allergy Frontiers: Epigenetics, Allergens and Risk Factors

Part of the book series: Allergy Frontiers ((ALLERGY,volume 1))

  • 1157 Accesses

Allergens are defined as environmental agents that induce IgE-mediated immediate hypersensitivity reactions following inhalation, ingestion or injection. In some texts, allergens are described as ‘innocuous’ or‘harmless’, which is certainly true for the majority of non-sensitized individuals. However, for patients with hay fever, asthma or atopic dermatitis (AD), the majority of whom are sensitized to pollen or indoor allergens, exposure to allergens is far from harmless. Equally, local and systemic anaphylactic reactions to insect venom or food allergens are serious, and potentially life-threatening, problems for allergic patients. Little is understood about why certain allergens are associated with specific allergic conditions: why pollens cause hay fever, why asthma is strongly associated with indoor allergens and why peanut is such a potent cause of anaphylaxis. From the immunological point of view, it is important to distinguish between complete (‘true’, sensitising) allergens and incomplete (non-sensitising) allergens. Non-sensitising allergens are able to interact with IgE antibodies (which may or may not result in allergic symptoms), but are unable to induce the production of IgE antibodies. Their role as allergens fully depends on their cross-reactivity with complete (or sensitising) allergens. A good example of a non-sensitizing would be the apple allergen, Mal d 1, which is strongly cross-reactive with birch pollen, Bet v 1, but does not itself cause sensitization. While non-sensitizing cross-reacting allergens are of interest both from the clinical as well as from the immunological point of view, we focus in this chapter on allergenicity, the process that results in allergen-specific IgE synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Platts-Mills TA, Vervloet D, Thomas WR, Aalberse RC, Chapman MD (1997) Indoor allergens and asthma: report of the Third International Workshop. J Allergy Clin Immunol. 100:S2–24

    PubMed  CAS  Google Scholar 

  2. Scheiner O, Breiteneder H, Dolocek C, Duchene M, Ebner C, Ferreira F, Hoffmann K, Schenk S, Valenta R, Kraft D (1994) Molecular and functional characterization of allergens: basic and practical aspects. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M 221–232

    Google Scholar 

  3. Aalberse RC (2000) Structural biology of allergens. J Allergy Clin Immunol. 106:228–238

    PubMed  CAS  Google Scholar 

  4. Aalberse RC, Stapel SO (2001) Structure of food allergens in relation to allergenicity. Pediatr Allergy Immunol. 12(Suppl 14):10–14

    PubMed  Google Scholar 

  5. Chapman MD, Smith AM, Vailes LD, Arruda LK, Dhanaraj V, Pomés A (2000) Recombinant allergens for diagnosis and therapy of allergic disease. J Allergy Clin Immunol. 106:409–418

    PubMed  CAS  Google Scholar 

  6. Wopfner N, Gadermaier G, Egger M, Asero R, Ebner C, Jahn-Schmid B, Ferreira F (2005) The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol. 138:337–346

    PubMed  CAS  Google Scholar 

  7. Chapman MD, Pomes A, Breiteneder H, Ferreira F (2007) Nomenclature and structural biology of allergens. J Allergy Clin Immunol. 119:414–420

    PubMed  CAS  Google Scholar 

  8. Ferreira F, Wallner M, Thalhamer J (2004) Customized antigens for desensitizing allergic patients. Adv Immunol. 84:79–129

    PubMed  CAS  Google Scholar 

  9. Thomas WR, Hales BJ, Smith WA (2005) Genetically engineered vaccines. Curr Allergy Asthma Rep. 5:197–203

    PubMed  CAS  Google Scholar 

  10. Valenta R, Niederberger V (2007) Recombinant allergens for immunotherapy. J Allergy Clin Immunol. 119:826–830

    PubMed  CAS  Google Scholar 

  11. Larche M, Akdis CA, Valenta R (2006) Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol. 6:761–771

    PubMed  CAS  Google Scholar 

  12. Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills EN (2005) Structural related-ness of plant food allergens with specific reference to cross-reactive allergens: an in silico analysis. J Allergy Clin Immunol. 115:163–170

    PubMed  CAS  Google Scholar 

  13. Radauer C, Breiteneder H (2006) Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol. 117:141–147

    PubMed  CAS  Google Scholar 

  14. van Oort E, Lerouge P, de Heer PG, Seveno M, Coquet L, Modderman PW, Faye L, Aalberse RC, van RR (2004) Substitution of Pichia pastoris-derived recombinant proteins with man-nose containing O- and N-linked glycans decreases specificity of diagnostic tests. Int Arch Allergy Immunol. 135:187–195

    PubMed  Google Scholar 

  15. Hewitt CR, Brown AP, Hart BJ, Pritchard DI (1995) A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antipro-teases. J Exp Med. 182:1537–1544

    PubMed  CAS  Google Scholar 

  16. Shakib F, Gough L (2000) The proteolytic activity of Der p 1 selectively enhances IgE synthesis: a link between allergenicity and cysteine protease activity. Clin Exp Allergy. 30:751–752

    PubMed  CAS  Google Scholar 

  17. Asokananthan N, Graham PT, Stewart DJ, Bakker AJ, Eidne KA, Thompson PJ, Stewart GA (2002) House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol. 169:4572–4578

    PubMed  CAS  Google Scholar 

  18. Wan H, Winton HL, Soeller C, Taylor GW, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA, Garrod DR, Robinson C (2001) The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy. 31:279–294

    PubMed  CAS  Google Scholar 

  19. King C, Brennan S, Thompson PJ, Stewart GA (1998) Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol. 161:3645–3651

    PubMed  CAS  Google Scholar 

  20. Platts-Mills TA (2007) The role of indoor allergens in chronic allergic disease. J Allergy Clin Immunol. 119:297–302

    Google Scholar 

  21. Platts-Mills T, Vaughan J, Squillace S, Woodfolk J, Sporik R (2001) Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet. 357:752–756

    Google Scholar 

  22. Ownby DR, Johnson CC, Peterson EL (2002) Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA. 288:963–972

    PubMed  Google Scholar 

  23. Wallner M, Gruber P, Radauer C, Maderegger B, Susani M, Hoffmann-Sommergruber K, Ferreira F (2004) Lab scale and medium scale production of recombinant allergens in Escherichia coli. Methods. 32:219–226

    PubMed  CAS  Google Scholar 

  24. Ferreira F, Hirtenlehner K, Jilek A, Godnik-Cvar J, Breiteneder H, Grimm R, Hoffmann-Sommergruber K, Scheiner O, Kraft D, Breitenbach M, Rheinberger HJ, Ebner C (1996) Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J Exp Med 183:599–609

    PubMed  CAS  Google Scholar 

  25. Thomas WR, Hales BJ, Smith WA (2004) Recombinant allergens for analysing T-cell responses. Methods. 32:255–264

    PubMed  CAS  Google Scholar 

  26. Schmid-Grendelmeier P, Crameri R (2001) Recombinant allergens for skin testing. Int Arch Allergy Immunol. 125:96–111

    Google Scholar 

  27. Smith AM, Chapman MD (1996) Reduction in IgE binding to allergen variants generated by site-directed mutagenesis: contribution of disulfide bonds to the antigenic structure of the major house dust mite allergen Der p 2. Mol Immunol. 33:399–405

    PubMed  CAS  Google Scholar 

  28. Jutel M, Jaeger L, Suck R, Meyer H, Fiebig H, Cromwell O (2005) Allergen-specific immu-notherapy with recombinant grass pollen allergens. J Allergy Clin Immunol. 116:608–613

    PubMed  CAS  Google Scholar 

  29. Rhyner C, Weichel M, Fluckiger S, Hemmann S, Kleber-Janke T, Crameri R (2004) Cloning allergens via phage display. Methods. 32:212–218

    PubMed  CAS  Google Scholar 

  30. Chua KY, Doyle CR, Simpson RJ, Turner KJ, Stewart GA, Thomas WR (1990) Isolation of cDNA coding for the major mite allergen Der p II by IgE plaque immunoassay. Int Arch Allergy Appl Immunol. 91:118–123

    PubMed  CAS  Google Scholar 

  31. Thomas WR, Stewart GA, Simpson RJ, Chua KY, Plozza TM, Dilworth RJ, Nisbet A, Turner KJ (1988) Cloning and expression of DNA coding for the major house dust mite allergen Der p 1 in Escherichia coli. Int Arch Allergy Appl Immunol. 85:127–129

    PubMed  CAS  Google Scholar 

  32. Rafnar T, Griffith IJ, Kuo MC, Bond JF, Rogers BL, Klapper DG (1991) Cloning of Amb a I (antigen E), the major allergen family of short ragweed pollen. J Biol Chem. 266:1229–1236

    PubMed  CAS  Google Scholar 

  33. Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Scheiner O, Breitenbach M (1989) The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J. 8:1935–1938

    PubMed  CAS  Google Scholar 

  34. King TP, Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TA, Thomas W (1994) Allergen nomenclature. WHO/IUIS Allergen Nomenclature Subcommittee. Int Arch Allergy Immunol. 105:224–233

    CAS  Google Scholar 

  35. Marsh DG, Goodfriend L, King TP, Lowenstein H, Platts-Mills TA (1986) Allergen nomenclature. Bull World Health Organ. 64:767–774

    PubMed  CAS  Google Scholar 

  36. Piboonpocanun S, Malainual N, Jirapongsananuruk O, Vichyanond P, Thomas WR (2006) Genetic polymorphisms of major house dust mite allergens. Clin Exp Allergy. 36:510–516

    PubMed  CAS  Google Scholar 

  37. Obermeyer G, Gehwolf R, Sebesta W, Hamilton N, Gadermaier G, Ferreira F, Commandeur U, Fischer R, Bentrup FW (2004) Over-expression and production of plant allergens by molecular farming strategies. Methods. 32:235–240

    PubMed  CAS  Google Scholar 

  38. Vailes LD, Sun AW, Ichikawa K, Wu Z, Sulahian TH, Chapman MD, Guyre PM (2002) High-level expression of immunoreactive recombinant cat allergen (Fel d 1): targeting to antigen-presenting cells. J Allergy Clin Immunol. 110:757–762

    PubMed  CAS  Google Scholar 

  39. Best EA, Stedman KE, Bozic CM, Hunter SW, Vailes L, Chapman MD, McCall CA, McDermott MJ (2000) A recombinant group 1 house dust mite allergen, rDer f 1, with biological activities similar to those of the native allergen. Protein Expr Purif. 20:462–471

    PubMed  CAS  Google Scholar 

  40. Vailes LD, Kinter MT, Arruda LK, Chapman MD (1998) High-level expression of cockroach allergen, Bla g 4, in Pichia pastoris. J Allergy Clin Immunol. 101:274–280

    PubMed  CAS  Google Scholar 

  41. van Ree R, van Leeuwen WA, Bulder I, Bond J, Aalberse RC (1999) Purified natural and recombinant Fel d 1 and cat albumin in in vitro diagnostics for cat allergy. J Allergy Clin Immunol. 104:1223–1230

    PubMed  Google Scholar 

  42. Ball T, Edstrom W, Mauch L, Schmitt J, Leistler B, Fiebig H, Sperr WR, Hauswirth AW, Valent P, Kraft D, Almo SC, Valenta R (2005) Gain of structure and IgE epitopes by eukaryo-tic expression of the major Timothy grass pollen allergen, Phl p 1. FEBS J. 272:217–227

    PubMed  CAS  Google Scholar 

  43. van Oort E, de Heer PG, van Leeuwen WA, Derksen NI, Muller M, Huveneers S, Aalberse RC, van RR (2002) Maturation of Pichia pastoris-derived recombinant pro-Der p 1 induced by deglycosylation and by the natural cysteine protease Der p 1 from house dust mite. Eur J Biochem. 269:671–679

    PubMed  Google Scholar 

  44. Takai T, Kato T, Sakata Y, Yasueda H, Izuhara K, Okumura K, Ogawa H (2005) Recombinant Der p 1 and Der f 1 exhibit cysteine protease activity but no serine protease activity. Biochem Biophys Res Commun. 328:944–952

    PubMed  CAS  Google Scholar 

  45. Scheiner O, Kraft D (1995) Basic and practical aspects of recombinant allergens. Allergy. 50:384–391

    PubMed  CAS  Google Scholar 

  46. Godnic-Cvar J, Susani M, Breiteneder H, Berger A, Havelec L, Waldhor T, Hirschwehr R, Valenta R, Scheiner O, Rudiger H, Kraft D, Ebner C (1997) Recombinant Bet v 1, the major birch pollen allergen, induces hypersensitivity reactions equal to those induced by natural Bet v 1 in the airways of patients allergic to tree pollen. J Allergy Clin Immunol. 99:354–359

    Google Scholar 

  47. Arruda LK, Vailes LD, Hayden ML, Benjamin DC, Chapman MD (1995) Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem. 270:31196–31201

    PubMed  CAS  Google Scholar 

  48. Pittner G, Vrtala S, Thomas WR, Weghofer M, Kundi M, Horak F, Kraft D, Valenta R (2004) Component-resolved diagnosis of house-dust mite allergy with purified natural and recom-binant mite allergens. Clin Exp Allergy. 34:597–603

    PubMed  CAS  Google Scholar 

  49. Valenta R, Kraft D (2004) Recombinant allergens: from production and characterization to diagnosis, treatment, and prevention of allergy. Methods. 32:207–208

    PubMed  CAS  Google Scholar 

  50. Erwin EA, Custis NJ, Satinover SM, Perzanowski MS, Woodfolk JA, Crane J, Wickens K, Platts-Mills TA (2005) Quantitative measurement of IgE antibodies to purified allergens using streptavidin linked to a high-capacity solid phase. J Allergy Clin Immunol. 115:1029–1035

    PubMed  CAS  Google Scholar 

  51. Harwanegg C, Laffer S, Hiller R, Mueller MW, Kraft D, Spitzauer S, Valenta R (2003) Microarrayed recombinant allergens for diagnosis of allergy. Clin Exp Allergy. 33:7–13

    PubMed  CAS  Google Scholar 

  52. King EM, Vailes, LD, Tsay A, Satinover SM, Chapman MD (2007) Simultaneous detection of total and allergen-specific IgE using purified allergens in a fluorescent multiplex array. J Allergy Clin Immunol. 120:1126–1131.

    PubMed  CAS  Google Scholar 

  53. Smith WA, Chua KY, Kuo MC, Rogers BL, Thomas WR (1994) Cloning and sequencing of the Dermatophagoides pteronyssinus group III allergen, Der p III. Clin Exp Allergy. 24:220–228

    PubMed  CAS  Google Scholar 

  54. Chua KY, Stewart GA, Thomas WR, Simpson RJ, Dilworth RJ, Plozza TM, Turner KJ (1988) Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1. Homology with cysteine proteases. J Exp Med. 167:175–182

    CAS  Google Scholar 

  55. Stewart GA, Robinson C (2003) The immunobiology of allergenic peptidases. Clin Exp Allergy. 33:3–6

    PubMed  CAS  Google Scholar 

  56. Meno K, Thorsted PB, Ipsen H, Kristensen O, Larsen JN, Spangfort MD, Gajhede M, Lund K (2005) The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. J Immunol. 175:3835–3845

    PubMed  CAS  Google Scholar 

  57. de Halleux S., Stura E, VanderElst L, Carlier V, Jacquemin M, Saint-Remy JM (2006) Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen. J Allergy Clin Immunol. 117:571–576

    CAS  Google Scholar 

  58. Mahler V, Gutgesell C, Valenta R, Fuchs T (2006) Natural rubber latex and hymenoptera venoms share ImmunoglobinE-epitopes accounting for cross-reactive carbohydrate determinants. Clin Exp Allergy. 36:1446–1456

    PubMed  CAS  Google Scholar 

  59. Takai T, Kato T, Yasueda H, Okumura K, Ogawa H (2005) Analysis of the structure and allergenicity of recombinant pro- and mature Der p 1 and Der f 1: major conformational IgE epitopes blocked by prodomains. J Allergy Clin Immunol. 115:555–563

    PubMed  CAS  Google Scholar 

  60. Arruda LK, Vailes LD, Ferriani VP, Santos AB, Pomés A, Chapman MD (2001) Cockroach allergens and asthma. J Allergy Clin Immunol. 107:419–428

    PubMed  CAS  Google Scholar 

  61. Radauer C, Willerroider M, Fuchs H, Hoffmann-Sommergruber K, Thalhamer J, Ferreira F, Scheiner O, Breiteneder H (2006) Cross-reactive and species-specific immunoglobulin E epitopes of plant profilins: an experimental and structure-based analysis. Clin Exp Allergy. 36:920–929

    PubMed  CAS  Google Scholar 

  62. Gadermaier G, Dedic A, Obermeyer G, Frank S, Himly M, Ferreira F (2004) Biology of weed pollen allergens. Curr Allergy Asthma Rep. 4:391–400

    PubMed  Google Scholar 

  63. Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol. 113:821–830

    PubMed  CAS  Google Scholar 

  64. Reese G, Schicktanz S, Lauer I, Randow S, Luttkopf D, Vogel L, Lehrer SB, Vieths S (2006) Structural, immunological and functional properties of natural recombinant Pen a 1, the major allergen of Brown Shrimp, Penaeus aztecus. Clin Exp Allergy. 36:517–524

    PubMed  CAS  Google Scholar 

  65. Vieths S, Scheurer S, Ballmer-Weber B (2002) Current understanding of cross-reactivity of food allergens and pollen. Ann N Y Acad Sci. 964:47–68

    PubMed  CAS  Google Scholar 

  66. Henriksen A, King TP, Mirza O, Monsalve RI, Meno K, Ipsen H, Larsen JN, Gajhede M, Spangfort MD (2001) Major venom allergen of yellow jackets, Ves v 5: structural characterization of a pathogenesis-related protein superfamily. Proteins. 45:438–448

    PubMed  CAS  Google Scholar 

  67. King TP, Spangfort MD (2000) Structure and biology of stinging insect venom allergens. Int Arch Allergy Immunol. 123:99–106

    PubMed  CAS  Google Scholar 

  68. Hurst JL, Payne CE, Nevison CM, Marie AD, Humphries RE, Robertson DH, Cavaggioni A, Beynon RJ (2001) Individual recognition in mice mediated by major urinary proteins. Nature. 414:631–634

    PubMed  CAS  Google Scholar 

  69. Fan Y, Gore JC, Redding KO, Vailes LD, Chapman MD, Schal C (2005) Tissue localization and regulation by juvenile hormone of human allergen Bla g 4 from the German cockroach, Blattella germanica (L). Insect Mol Biol. 14:45–53

    PubMed  CAS  Google Scholar 

  70. Gore JC, Schal C (2007) Cockroach allergen biology and mitigation in the indoor environment. Annu Rev Entomol. 52:439–463

    PubMed  CAS  Google Scholar 

  71. Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol. 325:123–133

    Google Scholar 

  72. van Ree R, Antonicelli L, Akkerdaas JH, Pajno GB, Barberio G, Corbetta L, Ferro G, Zambito M, Garritani MS, Aalberse RC, Bonifazi F (1996) Asthma after consumption of snails in house-dust-mite-allergic patients: a case of IgE cross-reactivity. Allergy. 51:387–393

    PubMed  Google Scholar 

  73. van Ree R, Antonicelli L, Akkerdaas JH, Garritani MS, Aalberse RC, Bonifazi F (1996) Possible induction of food allergy during mite immunotherapy. Allergy. 51:108–113

    PubMed  Google Scholar 

  74. De Maat-Bleeker F, van Dijk AG, Berrens L (1985) Allergy to egg yolk possibly induced by sensitization to bird serum antigens. Ann Allergy. 54:245–248

    Google Scholar 

  75. Quirce S, Maranon F, Umpierrez A, de las HM, Fernandez-Caldas E, Sastre J (2001) Chicken serum albumin (Gal d 5*) is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome. Allergy. 56:754–762

    PubMed  CAS  Google Scholar 

  76. Gough L, Schulz O, Sewell HF, Shakib F (1999) The cysteine protease activity of the major dust mite allergen Der p 1 selectively enhances the immunoglobulin E antibody response. J Exp Med. 190:1897–1902

    PubMed  CAS  Google Scholar 

  77. Sharma S, Lackie PM, Holgate ST (2003) Uneasy breather: the implications of dust mite allergens. Clin Exp Allergy. 33:163–165

    PubMed  CAS  Google Scholar 

  78. Machado DC, Horton D, Harrop R, Peachell PT, Helm BA (1996) Potential allergens stimulate the release of mediators of the allergic response from cells of mast cell lineage in the absence of sensitization with antigen-specific IgE. Eur J Immunol. 26:2972–2980

    PubMed  CAS  Google Scholar 

  79. Miike S, Kita H (2003) Human eosinophils are activated by cysteine proteases and release inflammatory mediators. J Allergy Clin Immunol. 111:704–713

    PubMed  CAS  Google Scholar 

  80. Reed CE, Kita H (2004) The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol. 114:997–1008

    PubMed  CAS  Google Scholar 

  81. Kikuchi Y, Takai T, Kuhara T, Ota M, Kato T, Hatanaka H, Ichikawa S, Tokura T, Akiba H, Mitsuishi K, Ikeda S, Okumura K, Ogawa H (2006) Crucial commitment of proteolytic activity of a purified recombinant major house dust mite allergen Der p1 to sensitization toward IgE and IgG responses. J Immunol. 177:1609–1617

    PubMed  CAS  Google Scholar 

  82. Sears MR, Greene JM, Willan AR, Wiecek EM, Taylor DR, Flannery EM, Cowan JO, Herbison GP, Silva PA, Poulton R (2003) A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med. 349:1414–1422

    PubMed  CAS  Google Scholar 

  83. Arruda LK, Ferriani VP, Vailes LD, Pomés A, Chapman MD (2001) Cockroach allergens: environmental distribution and relationship to disease. Curr Allergy Asthma Rep. 1:466–473

    PubMed  CAS  Google Scholar 

  84. Rosenstreich DL, Eggleston P, Kattan M, Baker D, Slavin RG, Gergen P, Mitchell H, Niff-Mortimer K, Lynn H, Ownby D, Malveaux F (1997) The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med. 336:1356–1363

    PubMed  CAS  Google Scholar 

  85. Morgan WJ, Crain EF, Gruchalla RS, O'Connor GT, Kattan M, Evans R, III, Stout J, Malindzak G, Smartt E, Plaut M, Walter M, Vaughn B, Mitchell H (2004) Results of a home-based environmental intervention among urban children with asthma. N Engl J Med 351:1068–1080

    PubMed  CAS  Google Scholar 

  86. Pomés A, Chapman MD, Vailes LD, Blundell TL, Dhanaraj V (2002) Cockroach allergen Bla g 2: structure, function, and implications for allergic sensitization. Am J Respir Crit Care Med 165:391–397

    PubMed  Google Scholar 

  87. Wünschmann S, Gustchina A, Chapman MD, Pomés A (2005) Cockroach allergen Bla g 2: an unusual aspartic proteinase. J Allergy Clin Immunol 116:140–145

    PubMed  Google Scholar 

  88. Gustchina A, Li M, Wünschmann S, Chapman MD, Pomés A, Wlodawer A (2005) Crystal structure of cockroach allergen Bla g 2, an unusual zinc binding aspartic protease with a novel mode of self-inhibition. J Mol Biol 348:433–444

    PubMed  CAS  Google Scholar 

  89. Gruber A, Mancek M, Wagner H, Kirschning CJ, Jerala R (2004) Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J Biol Chem 279:28475–28482

    PubMed  CAS  Google Scholar 

  90. Keber MM, Gradisar H, Jerala R (2005) MD-2 and Der p 2 - a tale of two cousins or distant relatives? J Endotoxin Res 11:186–192

    PubMed  CAS  Google Scholar 

  91. Kaiser L, Gronlund H, Sandalova T, Ljunggren HG, van Hage-Hamsten M, Achour A, Schneider G (2003) The crystal structure of the major cat allergen Fel d 1, a member of the secretoglobin family. J Biol Chem 278:37730–37735

    PubMed  CAS  Google Scholar 

  92. Kaiser L, Velickovic TC, Badia-Martinez D, Adedoyin J, Thunberg S, Hallen D, Berndt K, Gronlund H, Gafvelin G, van HM, Achour A (2007) Structural Characterization of the Tetrameric form of the Major Cat Allergen Fel d 1. J Mol Biol 370:714–727

    PubMed  CAS  Google Scholar 

  93. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K (2002) Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196:1645–1651

    PubMed  CAS  Google Scholar 

  94. Woodfolk JA (2007) T-cell responses to allergens. J Allergy Clin Immunol 119:280–294

    PubMed  CAS  Google Scholar 

  95. Hayashi T, Raz E (2006) TLR9-based immunotherapy for allergic disease. Am J Med 119:897–896

    PubMed  CAS  Google Scholar 

  96. Virtanen T, Zeiler T, Mantyjarvi R (1999) Important animal allergens are lipocalin proteins: why are they allergenic? Int Arch Allergy Immunol 120:247–258

    PubMed  CAS  Google Scholar 

  97. Paine K, Flower DR (2000) The lipocalin website. Biochim Biophys Acta 1482:351–352

    PubMed  CAS  Google Scholar 

  98. Flower DR, North AC, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24

    PubMed  CAS  Google Scholar 

  99. Mitchell EB, Crow J, Chapman MD, Jouhal SS, Pope FM, Platts-Mills TA (1982) Basophils in allergen-induced patch test sites in atopic dermatitis. Lancet 1:127–130

    PubMed  CAS  Google Scholar 

  100. Ardern-Jones MR, Black AP, Bateman EA, Ogg GS (2007) Bacterial superantigen facilitates epithelial presentation of allergen to T helper 2 cells. Proc Natl Acad Sci U S A 104:5557–5562

    Google Scholar 

  101. Aalberse RC (1996) Atopy and the ectopic immune response. Immunol Cell Biol 74:201–205

    PubMed  CAS  Google Scholar 

  102. Durham SR, Smurthwaite L, Gould HJ (2000) Local IgE production. Am J Rhinol 14:305–307

    PubMed  CAS  Google Scholar 

  103. Pawankar R (2001) Mast cells as orchestrators of the allergic reaction: the IgE-IgE receptor mast cell network. Curr Opin Allergy Clin Immunol 1:3–6

    PubMed  CAS  Google Scholar 

  104. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, Smurthwaite L (2003) The biology of IgE and the basis of allergic disease. Annu Rev Immunol 21:579–628

    PubMed  CAS  Google Scholar 

  105. Ryzhov S, Goldstein AE, Matafonov A, Zeng D, Biaggioni I, Feoktistov I (2004) Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. J Immunol 172:7726–7733

    PubMed  CAS  Google Scholar 

  106. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    PubMed  CAS  Google Scholar 

  107. Brinkmann V, Heusser CH (1993) T cell-dependent differentiation of human B cells into IgM, IgG, IgA, or IgE plasma cells: high rate of antibody production by IgE plasma cells, but limited clonal expansion of IgE precursors. Cell Immunol 152:323–332

    PubMed  CAS  Google Scholar 

  108. Le GG, Schultze N, Walti S, Einsle K, Finkelman F, Kosco-Vilbois MH, Heusser C (1996) The development of IgE + memory B cells following primary IgE immune responses. Eur J Immunol 26:3042–3047

    Google Scholar 

  109. Horst A, Hunzelmann N, Arce S, Herber M, Manz RA, Radbruch A, Nischt R, Schmitz J, Assenmacher M (2002) Detection and characterization of plasma cells in peripheral blood: correlation of IgE + plasma cell frequency with IgE serum titre. Clin Exp Immunol 130:370–378

    PubMed  CAS  Google Scholar 

  110. Karnowski A, chatz-Straussberger G, Klockenbusch C, Achatz G, Lamers MC (2006) Inefficient processing of mRNA for the membrane form of IgE is a genetic mechanism to limit recruitment of IgE-secreting cells. Eur J Immunol 36:1917–1925

    PubMed  CAS  Google Scholar 

  111. Arps V, Sudowe S, Kolsch E (1998) Antigen dose-dependent differences in IgE antibody production are not due to polarization towards Th1 and Th2 cell subsets. Eur J Immunol 28:681–686

    PubMed  CAS  Google Scholar 

  112. Erwin EA, Ronmark E, Wickens K, Perzanowski MS, Barry D, Lundback B, Crane J, Platts-Mills TA (2007) Contribution of dust mite and cat specific IgE to total IgE: Relevance to asthma prevalence. J Allergy Clin Immunol 119:359–365

    PubMed  CAS  Google Scholar 

  113. Aalberse RC, Platts-Mills TA (2004) How do we avoid developing allergy: modifications of the TH2 response from a B-cell perspective. J Allergy Clin Immunol 113:983–986

    PubMed  CAS  Google Scholar 

  114. Platts-Mills TA (1979) Local production of IgG, IgA and IgE antibodies in grass pollen hay fever. J Immunol 122:2218–2225

    Google Scholar 

  115. Chapman MD, Platts-Mills TA, Gabriel M, Ng HK, Allan WG, Hill LE, Nunn AJ (1980) Antibody response following prolonged hyposensitization with Dermatophagoides pteronys-sinus extract. Int Arch Allergy Appl Immunol 61:431–440

    PubMed  CAS  Google Scholar 

  116. Sudowe S, Rademaekers A, Kolsch E (1997) Antigen dose-dependent predominance of either direct or sequential switch in IgE antibody responses. Immunology 91:464–472

    PubMed  CAS  Google Scholar 

  117. Cameron L, Gounni AS, Frenkiel S, Lavigne F, Vercelli D, Hamid Q (2003) S epsilon S mu and S epsilon S gamma switch circles in human nasal mucosa following ex vivo allergen challenge: evidence for direct as well as sequential class switch recombination. J Immunol 171:3816–3822

    PubMed  CAS  Google Scholar 

  118. MacLennan IC, Toellner KM, Cunningham AF, Serre K, Sze DM, Zuniga E, Cook MC, Vinuesa CG (2003) Extrafollicular antibody responses. Immunol Rev 194:8–18

    PubMed  CAS  Google Scholar 

  119. Norman PS, Winkenwerder WL, Lichtenstein LM (1968) Immunotherapy of hay fever with ragweed antigen E: comparisons with whole pollen extract and placebos. J Allergy 42:93–108

    PubMed  CAS  Google Scholar 

  120. Gleich GJ, Jacob GL (1975) Immunoglobulin E antibodies to pollen allergens account for high percentages of total immunoglobulin E protein. Science 190:1106–1108

    PubMed  CAS  Google Scholar 

  121. Creticos PS, Schroeder JT, Hamilton RG, Balcer-Whaley SL, Khattignavong AP, Lindblad R, Li H, Coffman R, Seyfert V, Eiden JJ, Broide D (2006) Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N Engl J Med 355:1445–1455

    PubMed  CAS  Google Scholar 

  122. Palmer K, Burks W (2006) Current developments in peanut allergy. Curr Opin Allergy Clin Immunol 6:202–206

    PubMed  CAS  Google Scholar 

  123. van RR (2007) Indoor allergens: relevance of major allergen measurements and standardization. J Allergy Clin Immunol 119:270–277

    Google Scholar 

  124. Niederberger V, Horak F, Vrtala S, Spitzauer S, Krauth MT, Valent P, Reisinger J, Pelzmann M, Hayek B, Kronqvist M, Gafvelin G, Gronlund H, Purohit A, Suck R, Fiebig H, Cromwell O, Pauli G, van Hage-Hamsten M, Valenta R (2004) Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci U S A. 101(Suppl 2):14677–14682

    PubMed  CAS  Google Scholar 

  125. Tighe H, Takabayashi K, Schwartz D, Van NG, Tuck S, Eiden JJ, Kagey-Sobotka A, Creticos PS, Lichtenstein LM, Spiegelberg HL, Raz E (2000) Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J Allergy Clin Immunol 106:124–134

    PubMed  CAS  Google Scholar 

  126. Zhu D, Kepley CL, Zhang K, Terada T, Yamada T, Saxon A (2005) A chimeric human-cat fusion protein blocks cat-induced allergy. Nat Med 11:446–449

    PubMed  CAS  Google Scholar 

  127. Rhyner C, Kundig T, Akdis CA, Crameri R (2007) Targeting the MHC II presentation pathway in allergy vaccine development. Biochem Soc Trans 35:833–834

    PubMed  CAS  Google Scholar 

  128. Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci U S A 103:14664–14671

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Chapman, M.D., Pomés, A., Aalberse, R.C. (2009). Molecular Biology of Allergens: Structure and Immune Recognition. In: Pawankar, R., Holgate, S.T., Rosenwasser, L.J. (eds) Allergy Frontiers: Epigenetics, Allergens and Risk Factors. Allergy Frontiers, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-72802-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-72802-3_16

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-72801-6

  • Online ISBN: 978-4-431-72802-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics