Skip to main content

Role of cytoskeleton in the histamine release from mast cells

  • Chapter
New Advances in Histamine Research

Abstract

It has been supposed by several investigators that cytoskeleton is involved in the exocytosis of rat mast cells, though conclusive evidence has·not been submitted (Gillespie et al., 1968; Rölich, 1975). Recently, three-dimensional images of a subplasmalemmal network and granules surrounded by a small-meshed network in the same cell have been shown by Nielsen and Jahn (1984). In addition, the existence of. actin filaments in the mast cells was reported by Tasaka et al. (1986a). In resting cells, actin immunofluorescence appeared as a net-like formation surrounding each granule. After stimulation with secretagogues, the distribution of the actin filaments became very irregular and disordered. In immunoelectron microscopy, patches of anti-actin immunogold particles were observed in the perigranular, nucleus and cell membranes. Curiously enough, a dense distribution of immunogold particles was often observed in the microvilli and on the surface of extruded granules (Tasaka et al., 1986a). This finding indicates that the actin located on the cell surface probably participates in exocytosis. In order to study more precisely the events leading to degranulation, this study was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelstein R.S. and Conti M.A. (1975) Phosphorylation of platelet myosin increases actinactivated myosin ATPase activity. Nature, 256: 597–598

    Article  PubMed  CAS  Google Scholar 

  • Almers W. and Neher E. (1985) The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett., 192: 13–18

    Article  PubMed  CAS  Google Scholar 

  • Barak L.S., Nothnagel E.A., DeMarco E.F. and Webb W.W. (1981) Differential staining of actin in metaphase spindles with 7-nitrobenz-2-oxa-1, 3-diazole-phallacidin and fluorescent DNase: Is actin involved in chromosomal movement? Proc. Natl. Acad. Sci. USA, 78: 3034–3038

    Article  PubMed  CAS  Google Scholar 

  • Bormann B.-J., Huang C.-K., Lam G.F. and Jaffe E.A. (1986) Thrombin-induced vimentin phosphorylation in cultured human umbilical vein endothelial cells. J. Biol. Chem., 261: 10471–10474

    PubMed  CAS  Google Scholar 

  • Burridge K. and Phillips J.H. (1975) Association of actin and myosin with secretory granule membranes. Nature, 254: 524–529

    Article  Google Scholar 

  • Burwen S.J. and Satir B.H. (1977) Plasma membrane on the mast cell surface and their relationship to secretory activity. J. Cell Biol., 74: 690–697

    Article  PubMed  CAS  Google Scholar 

  • Corcia A., Pecht I., Hemmerich S., Ran S. and Rivnay B. (1988) Calcium specificity of the antigen-induced channels in rat basophilic leukemia cells. Biochemistry, 27: 7499–7506

    Article  PubMed  CAS  Google Scholar 

  • Daniel J.L., Molish I.R., Rigmaiden M. and Stewart G. (1984) Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J. Biol. Chem., 259: 9826–9831

    PubMed  CAS  Google Scholar 

  • Durham A.C.H. (1974) A unified theory of the control of actin and myosin in nonmuscle movements. Cell, 2: 123–136

    Article  PubMed  CAS  Google Scholar 

  • Edelman A.M., Blumenthal D.K. and Krebs E.G. (1987) Protein serine-threonine kinase. Ann. Rev. Biochem., 56: 567–614

    Article  PubMed  CAS  Google Scholar 

  • Ennis M., Truneh A., White J.R and Pearce F.L. (1980) Calcium pools involved in histamine release from mast cells. Int. Archs. Allergy Appl. Immunol., 62: 467–471

    Article  CAS  Google Scholar 

  • Foreman J.C., Mongar J.L. and Gomperts B.D. (1973) Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature, 245: 249–251

    Article  PubMed  CAS  Google Scholar 

  • Fowler V.M. and Pollard H.B. (1982) Chromaffin granule membrane-F-actin interactions are calcium sensitive. Nature, 295: 336–339

    Article  PubMed  CAS  Google Scholar 

  • Gillespie E., Levine RJ. and Malawista S.E. (1968) Histamine release from rat peritoneal mast cells: inhibition by colchicine and potentiation by deuterium oxide. J. Pharmacal. Exp. Ther., 164: 158–165

    CAS  Google Scholar 

  • Hartwig J.H. and Stossel T.P. (1982) Macrophages: their use in elucidation of the cytoskeletal roles of actin. Methods Cell Biol., 25: 201–225

    Article  PubMed  CAS  Google Scholar 

  • Highsmith S., Bloebaum P. and Snowdowne KW. (1986) Sarcoplasmic reticulum interacts with the Ca(2+) indicator precursor Fura-2-AM. Biochem. Biophys. Res. Commun., 138: 1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Inagaki M., Nishi Y., Nishizawa K, Matsuyama M. and Saito C. (1987) Site-specific phosphorylation induced disassembly of vimentin filament in vitro. Nature, 328: 649–658

    Article  PubMed  CAS  Google Scholar 

  • Inagaki M., Gonda Y., Matsuyama M., Nishizawa K, Nishi Y. and Saito C. (1988) Intermediate filament reconstitution in vitro. The role of phosphorylation on the assemblydisassembly of desmin. J. Biol. Chem., 263: 5970–5978

    PubMed  CAS  Google Scholar 

  • Izushi K. and Tasaka K (1991) Essential role of ATP and possibility of activation of protein kinase C in Ca2+ -dependent histamine release from permeabilized rat peritoneal mast cells. Pharmacology, 42: 297–308

    Article  PubMed  CAS  Google Scholar 

  • Jennings L.K., Fox J.E.B., Edwards H.H. and Phillips D.R (1981) Changes in the cytoskeletal structure of human platelets following thrombin activation. J. Biol. Chem., 256: 6927–6932

    PubMed  CAS  Google Scholar 

  • Kawamoto S. and Hidaka H. (1984) Ca2+-activated, phospholipid-dependent protein kinase catalyzes the phosphorylation of actin binding proteins. Biochem. Biophys. Res. Commun., 118: 736–742

    Article  PubMed  CAS  Google Scholar 

  • Kessler S. and Kuhn C. (1975) Scanning electron microscopy of mast cell degranulation. Lab. Invest., 32: 71–77

    PubMed  CAS  Google Scholar 

  • Kobayashi E., Nakano H., Morimoto M., Tamaoki T. (1989) Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun., 159: 548–553

    Article  PubMed  CAS  Google Scholar 

  • Korn E. D. (1978) Biochemistry of actomyosin-dependent cell motility. Proc. Natl. Acad. Sci. USA, 75: 588–599

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E. (1980) Intermediate filaments as mechanical integrators of cellular space. Nature, 283: 249–256

    Article  PubMed  CAS  Google Scholar 

  • Meyer D.I. and Burger M.M. (1975) The chromaffin granule surface: the presence of actin and the nature of its interaction with membrane. FEBS Lett., 101: 129–133

    Article  Google Scholar 

  • Mio M. and Tasaka K (1989) Microfilament-associated, local degranulation of rat peritoneal mast cells. Int. Archs. Allergy Appl. Immunol., 88: 369–371

    Article  CAS  Google Scholar 

  • Nielsen E.H. and Jahn H. (1984) Cytoskeletal studies on Lowicryl K4M embedded and Affi-Gel 731 attached rat peritoneal mast cells. Virchows Arch., 45: 313–323

    Article  CAS  Google Scholar 

  • Nishida E., Kumagai H., Ohtsuki I. and Sakai H. (1979) The interactions between calciumdependent regulator protein of cyclic nucleotide phosphodiesterase and microtubule proteins. I. Effects of calcium-dependent regulator protein on the calcium sensitivity of microtubule assembly. J. Biochem., 85: 1257–1266

    PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature, 308: 693–698

    Article  PubMed  CAS  Google Scholar 

  • Orr T.S.C., Hall D.E. and Allison A.C. (1972) Role of contractile microfilaments in the release of histamine from mast cells. Nature, 236: 350–351

    Article  PubMed  CAS  Google Scholar 

  • Rölich P. (1975) Membrane-associated actin filaments in the cortical cytoplasm of the rat mast cells. Exp. Cell. Biol., 93: 293–298

    Google Scholar 

  • Schatzman RC., Wise B.C. and Kuo J.F. (1981) Phospholipid-selective calcium-dependent protein kinase: inhibition by anti-psychotic drugs. Biochem. Biophys. Res. Commun., 98: 669–676

    Article  PubMed  CAS  Google Scholar 

  • Sieghart W., Theoharides T., Alper S.L., Douglas W.W. and Greengard P. (1978) Calciumdependent protein phosphorylation during secretion by exocytosis in the mast cells. Nature, 275: 329–330

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K and Mio M. (1989) Microfilament-associated degranulation of sensitized guinea-pig lung mast cells. Agents Actions, 27: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Akagi M. and Miyoshi K (1986a) Distribution of actin filaments in rat mast cells and its role in histamine release. Agents Actions, 18: 49–52

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Mio M. and Okamoto M. (1986b) Intracellular calcium release induced by histamine releasers and its inhibition by some antiallergic drugs. Ann. Allergy, 56: 464–469

    PubMed  CAS  Google Scholar 

  • Tasaka K, Mio M. and Okamoto M. (1987) The role of intracellular Ca2+ in the degranulation of skinned mast cells. Agents Actions., 20: 157–160

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Akagi M., Miyoshi K and Mio M. (1988) Role of microfilaments in the exocytosis of rat peritoneal mast cells. Int. Archs. Allergy Appl. Immunol., 87: 213–221

    Article  CAS  Google Scholar 

  • Tasaka K, Mio M. and Akagi M. (1989) The role of microfilaments in the degranulation and histamine release from mast cells. In ‘Bioinformatics’, (eds.) Hatase O. and Wang J.H., Elsevier, Amsterdam, pp. 195–203

    Google Scholar 

  • Tasaka K, Sugimoto Y. and Mio M. (1990) Sequential analysis of histamine release and intracellular Ca2+ release from murine mast cells. Int. Arch. Allergy Appl. Immunol., 91: 211–213

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Mio M., Fujisawa K and Aoki I. (1991a) Role of microtubules on Ca2+ release from the endoplasmic reticulum and associated histamine release from rat peritoneal mast cells. Biochem. Pharmacol., 41: 1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Mio M., Akagi M., Fujisawa K and Aoki I. (1991b) Role of the cytoskeleton in Ca2+ release from the intracellular Ca store of rat peritoneal mast cells. Agents Actions, 33: 44–47

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Mio M. and Izushi K (1991c) Role of cytoskeletons on Ca2+ release from the intracellular Ca store of rat peritoneal mast cells. Skin Pharmacol., 4 (suppl 1): 43–55

    Article  PubMed  Google Scholar 

  • Tellam R and Friden C. (1982) Cytochalasin D and platelet gelsolin accelerate actin polymer formation: A model for regulation of the extent of actin polymer formation in VlVO. Biochemistry, 21: 3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Terasaki M., Chen L.B. and Fujiwara K (1986) Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell Biol., 103: 1557–1568

    Article  PubMed  CAS  Google Scholar 

  • Tokui T., Yamauchi T., Yano T., Nishi Y., Kusagawa M., Yatani R. and Inagaki M. (1990) Ca2+ -calmodulin-dependent protein kinase II phosphorylates various types of non-epithelial intermediate filament proteins. Biochem. Biophys. Res. Commun., 169: 896–904

    Article  PubMed  CAS  Google Scholar 

  • Tsuyama S., Bramblett G.T., Huang KP. and Flavin M. (1986) Calcium/phospholipiddependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and not accessible to other kinases. J. Biol. Chem., 261: 4110–4116

    PubMed  CAS  Google Scholar 

  • Weber K and Osborn M. (1981) Microtubule and intermediate filament networks in cells viewed by immunofluorescence microscopy. In ‘Cytoskeletal Elements and Plasma Membrane Organization’, (eds.) Poste G. and Nicolson G.L., Elsevier, Amsterdam, pp. 1–53

    Google Scholar 

  • Wells E. and Mann J. (1983) Phosphorylation of a mast cell protein in response to treatment with anti-allergic compounds. Implications for the mode of action of sodium cromoglycate. Biochem. Phannacol., 32: 827–842

    Article  Google Scholar 

  • Yazawa M., Yagi K and Sobue K (1987) Isolation and characterization of a calmodulin binding fragment of chicken gizzard caldesmon. J. Biochem., 102: 1065–1073

    PubMed  CAS  Google Scholar 

  • Yoshii N., Mio M. and Tasaka K (1988) Ca uptake and Ca releasing properties of the endoplasmic reticulum in rat peritoneal mast cells. Immunophannacology, 16: 107–113

    Article  CAS  Google Scholar 

  • Yoshimura N., Mittag T.W. and Podos S.M. (1989) Calcium-dependent phosphorylation of proteins in rabbit ciliary processes. Invest. Ophthalmol. Vis. Sci., 30: 723–730

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Tasaka, K. (1994). Role of cytoskeleton in the histamine release from mast cells. In: New Advances in Histamine Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68263-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68263-9_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68265-3

  • Online ISBN: 978-4-431-68263-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics