Skip to main content

Changes in the Hypothalamic and Brain Stem Catecholaminergic Systems in Experimental Hydrocephalus: A Histochemical Observation

  • Conference paper
Hydrocephalus

Summary

Fluorescence histochemical analysis combined with a sensitive assay method using high performance liquid chromatography (HPLC) revealed definite changes in the central catecholaminergic systems in experimental hydrocephalus. Hydrocephalus was induced in rats by injection of kaolin into the cisterna magna. Rats were placed into three groups: control, paired feeding, and hydrocephalic. Then hydrocephalic group was divided into mild and severe subgroups according to the degree of neurological symptoms.

Brain norepinephrine (NE) levels were decreased in the frontal cortex, in the hippocampus, and in the cerebellum. NE levels in the hypothalamus were decreased only in the severe hydrocephalic group. There were no significant differences between the control and the paired feeding groups in brain NE levels. Brain dopamine (DA) concentration was the same in the hydrocephalic and the control groups.

Fluorescent histochemistry revealed the accumulation of NE in the cell body of the locus coeruleus and the subcoeruleus neurons. In contrast, the NE fluorescence of the nerve terminals was reduced in the frontal cortex and the periventricular area of the hypothalamus. Catecholamine histofluorescence was not changed in the striatum and the lower brain stem.

The coerulo-cortical and periventricular pathways of the ascending NE systems were selectively impaired in experimental hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RD, Fisher CM Hakim S, Ojemann RG, Sweet WH (1965) Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med 273: 117–126

    CAS  Google Scholar 

  • Aston-Jones G, Bloom FE (1981a) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 876–886

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Bloom FE (1981b) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1: 887–900

    PubMed  CAS  Google Scholar 

  • Björklund A, Lindvall O, Svensson LÅ (1972) Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Histochemie 32: 113–131

    Article  PubMed  Google Scholar 

  • Clark RG, Milhorat TH (1970) Experimental hydrocephalus, Part 3: Light microscopic findings in acute and subacute obstructive hydrocephalus in the monkey. J Neurosurg 32: 400–413

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol Scand (Suppl)62: 232 1–55

    Google Scholar 

  • Ehara K, Matsumoto S, Yoshida N, Kuno T, Tanaka C (1982) Ascending norepinephrine pathways impaired in experimental hydrocephalus. Jpn J Pharmacol 32: 205–208

    Article  PubMed  CAS  Google Scholar 

  • Falck B, Hillarp NÅ, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10: 348–354

    Article  CAS  Google Scholar 

  • Gitler MS, Barraclough CA (1987) Locus coeruleus stimulation arguments LHRH release induced by medial preoptic stimulation. Evidence that the major LC stimulatory component enters contralaterally into the hypothalamus. Brain Res 422: 1–10

    CAS  Google Scholar 

  • Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain — I. The disposition of [3H]Norepinephrine, [3H]Dopamine and [3H]Dopa in various regions of the brain. J Neurochem 13: 655–659

    Article  PubMed  CAS  Google Scholar 

  • Hakim S, Adams RD (1965) The special clinical problem of symptomatic with normal cerebrospinal pressure. Obstruction of cerebrospinal fluid dynamics. J Neurol Sci 2: 307–327

    CAS  Google Scholar 

  • Hakim S, Venegas JG, Burton JD (1976) The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus. Mechanical interpretation and mathematical model. Surg Neurol 5: 187–210

    CAS  Google Scholar 

  • Inagawa T, Ishikawa S, Uozumi T (1980) Homovanillic acid and 5-hydroxyindoleacetic acid in the ventricular CSF of comatose patients with obstructive hydrocephalus. J Neurosurg 52: 635–641

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Tsubokawa T, Tsukiyama T, Nishimoto H, Moriyasu N (1981) Neurophysiological study on psychiatric symptoms in normal pressure hydrocephalus. Clinical evaluation by contingent negative variation. Neurol Surg (Tokyo) 9: 315–323 (in Japanese)

    CAS  Google Scholar 

  • Keller R, Oke A, Mefford I, Adams RN (1976) Liquid Chromatographic analysis of catecholamines, routine assay for regional brain mapping. Life Sci 19: 995–1004

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi RM, Palkovits M, Kopin IJ, Jacobowitz DM (1974) Biochemical mapping of noradrenergic nerves arising from the rat locus coeruleus. Brain Res 77: 269–279

    Article  PubMed  CAS  Google Scholar 

  • Lindauer MA, Griffith Jr JQ (1938) Cerebrospinal pressure, hydrocephalus, and blood pressure in the cat following intracisternal injection of colloidal kaolin. Proc Soc Exp Biol Med 39: 547–549

    Google Scholar 

  • Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain. Acta Physiol Scand [Suppl] 412: 1–48

    CAS  Google Scholar 

  • Lovely TJ, McAllister II JP, Miller DW, Lamperti AA Wolfson BJ (1989) Effects of hydrocephalus and surgical decompression on cortical norepinephrine levels in neonatal cats. Neurosurgery 24: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Hirayama A, Yamasaki S, Shirataki K, Fujiwara K (1975) Comparative study of various models of experimental hydrocephalus. Childs Brain 1: 236–242

    PubMed  CAS  Google Scholar 

  • Milhorat TH (1972) Hydrocephalus and the cerebrospinal fluid. Williams and Wilkins, Baltimore, pp 115–118

    Google Scholar 

  • Miwa A, Inagaki C, Fujiwara M, Takaori S (1982) The activities of noradrenergic and dopaminergic neuron systems in experimental hydrocephalus. J Neurosurg 57: 67–73

    Article  PubMed  CAS  Google Scholar 

  • Moir ATB, Aschcroft GW, Crawford TBB, Eccleston D, Guldberg HC (1970) Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain. Brain 93: 357–368

    Article  PubMed  CAS  Google Scholar 

  • Nagashima T, Tamaki N, Matsumoto S, Horwitz B, Seguchi Y (1987) Biomechanics of hydrocephalus: A new theoretical model. Neurosurgery 21: 898–904

    Article  PubMed  CAS  Google Scholar 

  • Owman CH, Rosengren E, West KA (1971) Influence of various intracranial pressure levels on the concentration of certain arylethylamines in rabbit brain. Experientia 27: 1036–1037

    Article  PubMed  CAS  Google Scholar 

  • Penfield W, Elvidge AR (1932) Hydrocephalus and the atrophy of cerebral compression. In (ed. Penfield W) Cytology and cellular pathology of the nervous system, vol 3. Hafner, New York, pp 1203–1217

    Google Scholar 

  • Shimazu T, Noma M, Saito M (1986) Chronic infusion of norepinephrine into the ventromedial hypothalamus induces obesity in rats. Brain Res 369: 215–233

    Article  PubMed  CAS  Google Scholar 

  • Torvik A, Stenwig AE (1977) The pathology of experimental obstructive hydrocephalus, electron microscopic observations. Acta Neuropathol (Berl) 38: 21–26

    Article  CAS  Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand [Suppl] 367: 1–48

    CAS  Google Scholar 

  • Yoshida N, Taniyama K, Tanaka C (1979) Adrenergic innervation and cyclic adenosine 3′5′-monophosphate levels in response to norepinephrine in stomach of postnatal rats. J Pharmacol Exp Ther 211: 174–180

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Ehara, K., Tanaka, C., Tamaki, N., Matsumoto, S. (1991). Changes in the Hypothalamic and Brain Stem Catecholaminergic Systems in Experimental Hydrocephalus: A Histochemical Observation. In: Matsumoto, S., Tamaki, N. (eds) Hydrocephalus. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68156-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68156-4_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68158-8

  • Online ISBN: 978-4-431-68156-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics