Skip to main content

Propagation Simulation

  • Chapter
  • First Online:
Tsunami Generation and Propagation

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Tsunami propagation simulations are very useful in both theoretical and application studies. Recent improvements in computer performance and the detailed bathymetry surveys in local- and global-scale make numerical simulations more feasible and reliable. This chapter treats the theoretical background and numerical schemes underlying tsunami propagation simulations. Since tsunami wavelength is usually greater than the sea depth, we approximate a 3-D equation of motion using 2-D tsunami equations. There are various kinds of tsunami equations according to the approximations. Hence, it is important to select appropriate tsunami equations depending on the situation and purpose of the simulation. Section 6.1 is an overview of various tsunami equations and introduces some results of the simulations. Section 6.2 derives the 2-D tsunami equations from the 3-D equation of motion by assuming long-wavelength wave propagation. We explain the linear long-wave equations, nonlinear long-wave equations, and linear dispersive equations. Section 6.3 illustrates the finite difference methods for numerically simulating the tsunami propagation across realistic bathymetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baba T et al (2016) Large-scale, high-speed tsunami prediction for the great Nankai trough earthquake on the K computer. Int J High Perform Comput Appl 30(1):71–84. https://doi.org/10.1177/1094342015584090

    Article  Google Scholar 

  • Cerjan C, Kosloff D, Kosloff R, Reshef M (1985) A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50(4):705–708

    Article  Google Scholar 

  • Coastal Engineering Committee, Japan Society of Civil Engineers (1994) Kaigan Hado (in Japanese), Japan Society of Civil Engineers, pp 520

    Google Scholar 

  • Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planet Sp 63(7):55. https://doi.org/10.5047/eps.2011.06.010

    Article  Google Scholar 

  • Hwang LS, Butler HL, Divoky DJ (1972) Tsunami model: generation and open-sea characteristics. Bull Seismol Soc Am 62(6):1579–1596

    Google Scholar 

  • Imamura F (1996) In: Yeh H, Liu P, Synolakis C (eds) Review of tsunami simulation with a finite difference method, in long-wave Runup models. World Scientific Publishing, Hackensack, pp 25–42

    Google Scholar 

  • Inazu D, Saito T (2014) Two subevents across the Japan trench during the 7 December 2012 off Tohoku earthquake (Mw 7.3) inferred from offshore tsunami records. J Geophys Res Solid Earth 119(7):5800–5813. https://doi.org/10.1002/2013JB010892

    Article  Google Scholar 

  • Iwasaki R, Mano A (1979) Two-dimensional numerical simulation of tsunami runup in the Eulerian description (in Japanese). Proceedings of 26th conference on coastal engineering, JSCE, pp 70–74

    Google Scholar 

  • Kirby JT, Shi F, Tehranirad B, Harris JC, Grilli ST (2013) Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Model 62:39–55. https://doi.org/10.1016/j.ocemod.2012.11.009

    Article  Google Scholar 

  • Koketsu K et al (2011) A unified source model for the 2011 Tohoku earthquake. Earth Planet Sci Lett 310(3):480–487. https://doi.org/10.1016/j.epsl.2011.09.009

    Article  Google Scholar 

  • Lotto GC, Nava G, Dunham EM (2017) Should tsunami simulations include a nonzero initial horizontal velocity? Earth Planet Sp 69:117. https://doi.org/10.1186/s40623-017-0701-8

    Article  Google Scholar 

  • Madsen PA, Sørensen OR (1992) A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry. Coast Eng 18(3–4):183–204. https://doi.org/10.1016/0378-3839(92)90019-Q

    Article  Google Scholar 

  • Maeda T, Tsushima H, Furumura T (2016) An effective absorbing boundary condition for linear long-wave and linear dispersive-wave tsunami simulations. Earth Planet Sp 68(1):1–14. https://doi.org/10.1186/s40623-016-0436-y

    Article  Google Scholar 

  • Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T (2001) The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of Northeast Japan. J Nat Dis Sci 23(2):83–88

    Google Scholar 

  • Munk WH (1963) Some comments regarding diffusion and absorption of tsunamis. In Proceedings of tsunami meetings, tenth Pacific science congress, IUGG Monograph, no. 24, Paris, pp 53–72

    Google Scholar 

  • Namegaya Y, Satake K (2014) Reexamination of the AD 869 Jogan earthquake size from tsunami deposit distribution, simulated flow depth, and velocity. Geophys Res Lett 41(7):2297–2303. https://doi.org/10.1002/2013GL058678

    Article  Google Scholar 

  • Oishi Y, Imamura F, Sugawara D (2015) Near-field tsunami inundation forecast using the parallel TUNAMI-N2 model: application to the 2011 Tohoku-Oki earthquake combined with source inversions. Geophys Res Lett 42(4):1083–1091. https://doi.org/10.1002/2014GL062577

    Article  Google Scholar 

  • Peregrine DH (1972) Equations for water waves and the approximations behind them. Waves on beaches and resulting sediment transport, pp 95–121

    Chapter  Google Scholar 

  • Saito T (2013) Dynamic tsunami generation due to sea-bottom deformation: analytical representation based on linear potential theory. Earth Planets Space 65(12):1411–1423

    Article  Google Scholar 

  • Saito T, Satake K, Furumura T (2010) Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii peninsula, Japan. J Geophys Res Solid Earth 115:B06303. https://doi.org/10.1029/2009JB006884

    Article  Google Scholar 

  • Saito T, Ito Y, Inazu D, Hino R (2011) Tsunami source of the 2011 Tohoku-Oki earthquake, Japan: inversion analysis based on dispersive tsunami simulations. Geophys Res Lett 38(7). https://doi.org/10.1029/2011GL049089

    Article  Google Scholar 

  • Saito T, Inazu D, Tanaka S, Miyoshi T (2013) Tsunami coda across the Pacific Ocean following the 2011 Tohoku-Oki earthquake. Bull Seismol Soc Am 103(2B):1429–1443. https://doi.org/10.1785/0120120183

    Article  Google Scholar 

  • Saito T, Inazu D, Miyoshi T, Hino R (2014) Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami. J Geophys Res Oceans 119:5160–5180. https://doi.org/10.1002/2014JC009971

    Article  Google Scholar 

  • Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys 144:450–470. https://doi.org/10.1007/BF00874378

    Article  Google Scholar 

  • Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am 103(2B):1473–1492. https://doi.org/10.1785/0120120122

    Article  Google Scholar 

  • Sato H, Fehler MC, Maeda T (2012) Seismic wave propagation and scattering in the heterogeneous earth, vol 484. Springer, Berlin

    Book  Google Scholar 

  • Shi F, Kirby JT, Harris JC, Geiman JD, Grilli ST (2012) A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model 43:36–51. https://doi.org/10.1016/j.ocemod.2011.12.004

    Article  Google Scholar 

  • Suzuki W, Aoi S, Sekiguchi H, Kunugi T (2011) Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9. 0) inverted from strong-motion data. Geophys Res Lett 38(7). https://doi.org/10.1029/2011GL049136

    Article  Google Scholar 

  • Van Dorn WG (1984) Some tsunami characteristics deducible from tide records. J Phys Oceanogr 13:353–363

    Article  Google Scholar 

  • Van Dorn WG (1987) Tide gage response to tsunamis. Part II: other oceans and smaller seas. J Phys Oceanogr 17:1507–1516

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saito, T. (2019). Propagation Simulation. In: Tsunami Generation and Propagation. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56850-6_6

Download citation

Publish with us

Policies and ethics