Skip to main content

Stabilizers-Mediated Nanoparticles Syntheses

  • Chapter
  • First Online:
Noble Metal Nanoparticles

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Of the chemical processes, a reverse micelle (w/o microemulsion, a soft template) synthesis has been demonstrated to be a viable method for producing a wide array of noble metals over a relatively narrow particle size distribution. Noble metal colloids can be prepared in metal salt/(non)ionic surfactant/oil/water microemulsions by using both classical and nontraditional reductants. Reduction of metal ions occurred in microemulsions based on some ionic and nonionic surfactants without adding specific reductants. Mostly, the spherical metal nanoparticles are fabricated. A number of nonspherical nanomaterials of aligned noble metal colloids were found in the prolate ionic surfactants micelles. The citrate reduction method is well known for its simple procedure, yielding stable and reproducible gold nanoparticles of narrow size distribution. The coordination of metal ions with functional groups such as NH2 in polymer served as weak cross-linkers to attach polymer chains and formation and stabilization of metal colloids. Gold nanoparticles surrounding with silica shells as a support could be a potentially useful method for the preparation of highly active nanoconjugates assemblies. Laser ablation of solvent-suspended metal powders can be used in for synthesis of gold/silver alloy and core@shell nanoparticles of predetermined composition. The generation of polymer coatings for noble metal nanoparticles (NMNPs) may feature stimulus-responsiveness (pH, temperature, ionic strength, and light) and spontaneously form versatile supramolecular structures. Some of the physical and chemical properties of the core nanoparticles are often imparted to the resulting polymeric shell system, producing hybrid materials with novel properties and functions that are not possible from the single-component structure alone. Various reducing agents introduced into polymer-based micelle systems may result in the formation of NMNPs of various sizes. A new method of producing gold nanoparticles is a surfactant-free synthesis, high variability in the introduction of (functionalized) ligands, and good control over the particle size. Soft-ligand-stabilized nanoparticles can be used as precursors to obtain nanoparticles with different surface chemistry by replacing the soft ligands with other desired ligands. The ionic liquids stabilize the metal nanoparticles noncovalently via electrostatic interactions. They initiated the formation of various nanoparticles such as spherical, oblate, nanorods of different aspect ratios, and sharp-edged nanostructures. The versatility of the micellar nanostructure lies in its capacity to cargo drug molecules and biological macromolecules that are either hydrophilic, therefore entrapped in the liposome inner aqueous core, or hydrophobic, therefore incorporated within the lipid bilayer. PEO-modified noble metal nanomaterials have several attractive characteristics for diagnostic applications, including (1) biocompatibility and stability, (2) unique tunable optical properties, and (3) easy conjugation of biomolecules to the surface for tumor specific targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

9-BBN:

9-borabicyclo [3.3.1] nonane

AED:

Average esterification degrees

AOT:

Sodium bis(2-ethylhexyl)sulfosuccinate

AuNPs:

Gold nanoparticles

AuNSs:

Gold nanoshells

BAC:

Benzyldimethyltetradecylammonium chloride

BE:

Binding energy

CMC:

Critical micelle concentration

CS:

Cysteamine-monochlorhydrat

CTAB:

Cetyltrimethylammonium bromide

CTAC:

Cetyltrimethylammonium chloride

d2 :

Interparticle spacing

DDT:

Dodecanethiol

diglyme:

Diethylene glycol dimethyl ether

DKSS:

Sucrose fatty acids of monoesters and di- and triesters, fatty acid constituent consisting of stearic acid and palmitic acid

DLS:

Dynamic light scattering

DT:

Dodecanethiol

EDXRF:

Energy-dispersive X-ray fluorescence

EPR:

Enhanced permeability and retention

fcc:

Face-centered cubic

FTIR:

Fourier transform infrared spectroscopy

HAc:

Acetic acid

HAuNS:

Hollow gold nanoshells

hcp:

Hexagonal close packed

HDT:

1-hexadecanethiol

HER2:

Human epidermal growth receptor 2

HLB:

Hydrophilic–lipophilic balance

HMTS:

Heptamethyltrisiloxane

HRSEM:

High-resolution SEM

HRTEM:

High-resolution TEM

HTAB:

N-hexadecyltrimethylammonium bromide

ICP:

Inductively coupled plasma

IL:

(Ionic liquid)-surfactant

I sc :

Total scattered light intensity

LMCT:

Ligand-to-metal charge transfer

LPR:

Longitudinal plasmonic resonance

LSP:

Longitudinal surface plasmon

LSPR:

Localized surface plasmon resonance

MDR:

Multidrug resistance

N2H4 :

Hydrazine

NIR:

Near-infrared

MNPs:

Metal nanoparticles

MPA:

Mercaptopropionic acid

MPCs:

Monolayer-protected clusters

MUA:

11-mercaptoundecanoic acid

MUOH:

11-mercaptoundecanol

NMNCs:

Noble metal nanocrystals

NMNPs:

Noble metal nanoparticles

NT:

1-nonanethiol

o/w:

Oil-in-water

PAM:

Polyacrylamide

PBS:

Phosphate buffer solution

PDI:

Polydispersity index,

PDPAEMA:

Poly[2-(diisopropylamino) ethyl methacrylate]

PEG:

Poly(ethylene glycole)

PEI-HCA:

Polyethylenimine-g-hydrocaffeic acid

PEO-b-PCL:

Poly(ethylene oxide)-b-poly(ε-caprolactone)

PEO-b-PDHPMA-b-PDPAEMA:

Poly(ethylene oxide)-b-poly(2,3-dihydroxypropyl methacrylate)-b-poly[2-(diisopropylamino) ethyl methacrylate]

PEO-PPO-PEO:

Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)

P-gp:

Glycoprotein

PNIPAM:

Poly(N-isopropylacrylamide)

PSt-b-PVP:

Poly(styrene)-block-poly(vinylpyridine)

PVPo:

Polyvinylpyrrolidone

QD-particles:

Quantum dot particles

RI:

Refractive index

SAED:

Selected area (electron) diffraction

SAXS:

Small angle X-ray scattering

SDS:

Sodium dodecylsulfate

SM:

3–sulfonate mercaptopropan

SP:

Surface plasmon

SPR:

Surface plasmon resonance

SPRs:

Surface plasmon resonances

SPIONs:

Superparamagnetic iron oxide nanoparticles

TBAB:

Tetrabutylammonium bromide

TDT:

1-tetradecanethiol

TEG:

Tetra (ethylene glycol)

TEM:

Transmission electron microscopy

TEOS:

Tetraethylorthosilicate

T c :

Crystallization temperature

T m :

Melting temperature

TOA:

Trioctylamine

TOAB:

Tetraoctylammonium bromide

TPR:

Transverse plasmon resonance

TRITC:

Tetramethyl rhodamine isothiocyanate

Tween 20:

Sorbitan monolaurate

w/c:

Water-in-CO2 microemulsions

w/o:

Water-in-oil

XANES:

X-ray absorption near-edge spectroscopy

XPS:

X-ray photoelectron spectroscopy

λ max :

Absorption maximum

References

  1. Capek I (2006) Nanocomposite structures and dispersions. In: D. Mobius, R. Muller (eds). Elsevier, London

    Google Scholar 

  2. Misra RDK, Gubbala S, Kale A, Egelhoff WF (2004) A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique. J Mater Sci Eng B 111:164–174

    Article  CAS  Google Scholar 

  3. Sanchez-Dominguez M, Pemartin K, Boutonnet M (2012) Preparation of inorganic nanoparticles in oil-in-water microemulsions: a soft and versatile approach. Curr Opin Colloid Interface Sci 17:297–305

    Article  CAS  Google Scholar 

  4. Boutonnet M, Kizling J, Stenius P (1982) The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf 5:209–225

    Article  CAS  Google Scholar 

  5. Thikett K, Brice H, Myakonkaya O, Eastoe J, Rogers SE, Heenan RK, Grillo I (2010) Microemulsion-based organogels containing inorganic nanoparticles. Soft Matter 6:1291–1296

    Article  CAS  Google Scholar 

  6. Boutonnet M, Lögdberg S, Svensson E (2008) Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr Opin Colloid Interface Sci 13:270–286

    Article  CAS  Google Scholar 

  7. Liu S, Weaver JVM, Save M, Armes SP (2002) Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 18:8350–8357

    Article  CAS  Google Scholar 

  8. Tatarchuk V, Sergievskaya A, Druzhinina I, Zaikovsky V (2011) Kinetics and mechanism of the growth of gold nanoparticles by reduction of tetrachloroauric acid by hydrazine in Triton N-42 reverse micelles. J Nanopart Res 13:4997–5007

    Article  CAS  Google Scholar 

  9. Chen S, Sommers JM (2001) Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution. J Phys Chem B 105:8816–8820

    Article  CAS  Google Scholar 

  10. Al–Jamal WT, Kostarelos K (2007) Liposome–nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine 2:85–98

    Google Scholar 

  11. Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14:331–341

    Article  CAS  Google Scholar 

  12. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  Google Scholar 

  13. Uskokovic V, Drofenik M (2005) Synthesis of materials within reverse micelles. Surf Rev Lett 12:239–277

    Article  CAS  Google Scholar 

  14. Murphy CJ, Sau TK, Gole A, Orendorff CJ (2005) Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull 30:349–355

    Article  CAS  Google Scholar 

  15. Pileni MP (1993) Reverse micelles: a microreactors. J Phys Chem 97:6961–6973

    Article  CAS  Google Scholar 

  16. Wu M, Chen D, Huang T (2001) Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17:3877–3883

    Article  CAS  Google Scholar 

  17. McLeod MC, McHenry RS, Beckman EJ, Roberts CB (2003) Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in perfluoropolyether/CO2 reverse micelle systems. J Phys Chem B 107:2693–2700

    Article  CAS  Google Scholar 

  18. Jain TK, Cassin G, Badiali JP, Pileni MP (1996) Relation between exchange process and structure of AOT reverse micellar system. Langmuir 12:2408–2411

    Article  CAS  Google Scholar 

  19. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74

    Article  CAS  Google Scholar 

  20. Aliotta F, Arcoleo V, Buccoleri S, La Manna G, Turco Liveri V (1995) Calorimetric investigation on the formation of gold nanoparticles in water/AOT/n-heptane microemulsions. Thermochim Acta 265:15–23

    Article  CAS  Google Scholar 

  21. Chiang CL (2000) Controlled growth of gold nanoparticles in aerosol-OT/sorbitan monooleate/isooctane mixed reverse micelles. J Colloid Interface Sci 230:60–66

    Article  CAS  Google Scholar 

  22. Herrera AP, Resto O, Briano JG, Rinaldi C (2005) Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology 16:S618–S625

    Article  CAS  Google Scholar 

  23. Calandra P, Giordano C, Longo A, Turco Liveri V (2006) Physicochemical investigation of surfactant-coated gold nanoparticles synthesized in the confined space of dry reversed micelles. Mater Chem Phys 98:494–499

    Article  CAS  Google Scholar 

  24. Abecassis B, Testard F, Zemb T (2009) Gold nanoparticle synthesis in worm-like catanionic micelles: microstructure conservation and temperature induced recovery. Soft Matter 5:974–978

    Article  CAS  Google Scholar 

  25. Takahashi M, Ohno S, Fujita N, Sengoku T, Yoda H (2011) Spontaneous formation of dye-functionalized gold nanoparticles using reverse micellar systems. J Colloid Interf Sci 356:536–542

    Article  CAS  Google Scholar 

  26. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    Article  CAS  Google Scholar 

  27. Hollamby MJ, Eastoe J, Chemelli A, Glatter O, Rogers S, Heenan RK, Grillo I (2010) Separation and purification of nanoparticles in a single step. Langmuir 26:6989–6994

    Article  CAS  Google Scholar 

  28. Luisi PL (1985) Enzymes hosted in reverse micelles in hydrocarbon solution. Angew Chem 24:439–450

    Article  Google Scholar 

  29. Kitahara A, Tamura T, Matsumura S (1979) Effect of water on stability of carbon black dispersed in nonaqueous aerosol OT solutions. Chem Lett 8:1127–1128

    Article  Google Scholar 

  30. Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Kopelman RR, Philbert M, Weissleder R, Rehemtulla A, Ross BD (2003) A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol Imag 2:324–332

    Article  CAS  Google Scholar 

  31. Mihaly M, Fleancu MC, Olteanu NL, Bojin D, Meghea A, Enachescu M (2012) Synthesis of gold nanoparticles by microemulsion assisted photoreduction method. C R Chim 15:1012–1021

    Article  CAS  Google Scholar 

  32. Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. Arab J Chem 5:397–417

    Article  CAS  Google Scholar 

  33. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128–130:5

    Article  CAS  Google Scholar 

  34. Hentze HP, Kaler EW (2003) Polymerization of and within self-organized media. Curr Opin Colloid Interface Sci 8:164–178

    Article  CAS  Google Scholar 

  35. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121

    Article  CAS  Google Scholar 

  36. Ge JP, Chen W, Liu LP, Li YD (2006) Formation of disperse nanoparticles at the oil/water interface in normal microemulsions. Chem Eur J 12:6552–6558

    Article  CAS  Google Scholar 

  37. Johnston KP, Harrison KL, Clarke MJ, Howdle SM, Heitz MP, Bright FV, Carlier C, Randolph TW (1996) Water-in-carbon dioxide microemulsions: an environment for hydrophiles including proteins. Science 271:624–526

    Google Scholar 

  38. Hoefling TA, Beitle RR, Enick RM, Beckman EJ (1993) Design and synthesis of highly CO2-soluble surfactants and chelating agents. Fluid Phase Equilib 83:203–212

    Article  CAS  Google Scholar 

  39. Clarke MJ, Harrison KL, Johnston KP, Howdle SM (1997) Water in supercritical carbon dioxide microemulsions: spectroscopic investigation of a new environment for aqueous inorganic chemistry. J Am Chem Soc 119:6399–6406

    Article  CAS  Google Scholar 

  40. Shah PS, Hanrath T, Johnston KP, Korgel BA (2004) Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids. J Phys Chem B 108:9574–9587

    Article  CAS  Google Scholar 

  41. Jin R, Cao YC, Hao E, Métraux GS, Schatz GZ, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  CAS  Google Scholar 

  42. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  43. Wang L, Luo J, Shan S, Crew E, Yin J, Zhong CJ, Wallek B, Wong SS (2011) Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Anal Chem 83:8688–8695

    Article  CAS  Google Scholar 

  44. Tang S, Vongehr S, Meng X (2010) Carbon spheres with controllable silver nanoparticle doping. J Phys Chem C 114:977–982

    Article  CAS  Google Scholar 

  45. Zhang W, Qiao X, Chen J (2007) Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids Surf A: Physicochem Eng Aspects 299:22–28

    Article  CAS  Google Scholar 

  46. Zhang W, Qiao X, Chen J, Wang HS (2006) Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J Colloid Interface Sci 302:370–373

    Article  CAS  Google Scholar 

  47. He BL, Tan JJ, Kong YL, Liu HF (2004) Synthesis of size controlled Ag nanoparticles. J Mol Catal A: Chem 221:121–126

    Article  CAS  Google Scholar 

  48. Manna A, Kulkarni BD, Bandyopadhyay K, Vijayamohanan K (1997) Synthesis and characterization of hydrophobic, approtically-dispersible, silver nanoparticles in winsor II type microemulsions. Chem Mater 9:3032–3036

    Article  CAS  Google Scholar 

  49. Andersson M, Pedersen JS, Palmqvist AEC (2005) Silver nanoparticle formation in microemulsions acting both as template and reducing agent. Langmuir 21:11387–11396

    Article  CAS  Google Scholar 

  50. Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97:12974–12983

    Article  CAS  Google Scholar 

  51. Monnoyer P, Fonseca A, Nagy JB (1995) Preparation of colloidal AgBr particles from microemulsions. Colloids Surf A 100:233–243

    Article  CAS  Google Scholar 

  52. Liz-Marzan LM, Lado-Touriño I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12:3585–3589

    Article  CAS  Google Scholar 

  53. Barnickel P, Wokaun A, Sager W, Eiche HF (1992) Size tailoring of silver colloids by reduction in WO microemulsions. J Colloid Interface Sci 148:80–90

    Article  CAS  Google Scholar 

  54. Chaudhari VR, Haram SK, Kulshreshtha SK, Bellare JR, Hassan PA (2007) Micelle assisted morphological evolution of silver nanoparticles. Colloids Surf A: Physicochem Eng Aspects 301:475–480

    Article  CAS  Google Scholar 

  55. Pileni MP, Gulik-Krzywick T, Tanori J, Filankembo A, Dedieu JC (1998) Template design of microreactors with colloidal assemblies: control the growth of copper metal rods. Langmuir 14:7359–7363

    Article  CAS  Google Scholar 

  56. Yu D, Yam VWW (2004) Controlled synthesis of monodisperse silver nanocubes in water. J Am Chem Soc 126:13200–13201

    Article  CAS  Google Scholar 

  57. Yu D, Yam VWW (2005) Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. J Phys Chem B 109:5497–5503

    Article  CAS  Google Scholar 

  58. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  59. Collier CP, Vossmeyer T, Heath JR (1998) Nanocrystal superlattices. Annu ReV Phys Chem 49:371–404

    Article  CAS  Google Scholar 

  60. Viau G, Piquemal JY, Esparrica M, Ung G, Chakroune N, Warmont F, Fiévet F (2003) Formation of assembled silver nanowires by reduction of silver thiolate in polyol/toluene medium. Chem Commun 2216–2217

    Google Scholar 

  61. Lindman B, Wennerström H (1980) Miceles amphiphile aggregation in aqueous solution. Top Curr Chem 87:1–87

    Article  CAS  Google Scholar 

  62. Korgel BA, Fitzmaurice D (1998) Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv Mater 10:661–665

    Article  CAS  Google Scholar 

  63. Jin RC, Egusa S, Scherer NF (2004) Thermally-induced formation of atomic Au clusters and conversion into nanocubes. J Am Chem Soc 126:9900–9901

    Article  CAS  Google Scholar 

  64. Noritomi H, Igari N, Kagitani K, Umezawa Y, Muratsubaki Y, Kato S (2010) Synthesis and size control of silver nanoparticles using reverse micelles of sucrose fatty acid esters. Colloid Polym Sci 288:887–891

    Article  CAS  Google Scholar 

  65. Otomo N (2003) Self-organized structures of food emulsifiers and their applications. Jpn J Food Eng 4:1–9

    Google Scholar 

  66. Noritomi H, Umezawa Y, Miyagawa S, Kato S (2011) Preparation of highly concentrated silver nanoparticles in reverse micelles of sucrose fatty acid esters through solid-liquid extraction method. Adv Chem Eng Sci 1:299–304

    Article  CAS  Google Scholar 

  67. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    Article  CAS  Google Scholar 

  68. Noritomi H, Ito S, Kojima N, Kato S, Nagahama K (2006) Forward and backward extractions of cytochrome c using reverse micellar system of sucrose fatty acid ester. Colloid Polym Sci 284:604–610

    Article  CAS  Google Scholar 

  69. Bagwe RP, Khilar KC (2000) Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir 16:905–910

    Article  CAS  Google Scholar 

  70. Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959

    Article  CAS  Google Scholar 

  71. Mitchell DJ, Ninham BW (1981) Micelles, vesicles, and microemulsions. J Chem Soc, Faraday Trans 2: Mol Chem Phys 77:601–629

    Google Scholar 

  72. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Article  CAS  Google Scholar 

  73. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  74. Wu Q, Cao H, Luan Q, Zhang J, Wang Z, Warner JH, Watt AAR (2008) Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg Chem 47:5882–5888

    Article  CAS  Google Scholar 

  75. Graf P, Mantion A, Foelske A, Shkilnyy A, Masic A, Thunemann AE, Taubert A (2009) Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chem-Eur J 15:5831–5844

    Article  CAS  Google Scholar 

  76. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  77. Jana NR, Peng XG (2003) Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J Am Chem Soc 125:14280–14281

    Article  CAS  Google Scholar 

  78. Roucoux A, Schultz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778

    Article  CAS  Google Scholar 

  79. Jana NR (2004) Shape effect in nanoparticle self-assembly. Angew Chem 116:1562–1566

    Article  Google Scholar 

  80. Jana NR, Pal T (2001) Acid-base equilibria in aqueous micellar medium: a comprehensive review. J Surf Sci Technol 17:191–212

    CAS  Google Scholar 

  81. Toernblom M, Henriksson U (1997) Effect of solubilization of aliphatic hydrocarbons on size and shape of rodlike C16TABr micelles studied by 2H NMR relaxation. J Phys Chem B 101:6028–6035

    Article  CAS  Google Scholar 

  82. Lin Z, Cai JJ, Scriven LE, Davis HT (1994) Spherical-to-wormlike micelle transition in CTAB solutions. J Phys Chem 98:5984–5993

    Article  CAS  Google Scholar 

  83. Fu H, Xiao D, Yao J, Yang G (2003) You have full text access to this content Nanofibers of 1,3-Diphenyl-2-pyrazoline induced by cetyltrimethylammonium bromide micelles. Angew Chem 115:2989–2992

    Article  Google Scholar 

  84. Jana NR (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882

    Article  CAS  Google Scholar 

  85. Fu H, Xiao D, Yao J, Yang G (2003) Nanofibers of 1,3-diphenyl-2-pyrazoline induced by cetyltrimethylammonium Bromide micelles. Angew Chem Int Ed 42:2883–2886

    Article  CAS  Google Scholar 

  86. Jana NR, Gearheart L, Obare SO, Murphy CJ (2002) Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 18:922–927

    Article  CAS  Google Scholar 

  87. Rodriguez-Fernandez J, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2005) Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J Phys Chem B 109:14257–14261

    Article  CAS  Google Scholar 

  88. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  89. Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11:3285–3287

    Article  CAS  Google Scholar 

  90. Zayats M, Baron R, Popov I, Willner I (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett 5:21–25

    Article  CAS  Google Scholar 

  91. Xiao Y, Pavlov V, Levine S, Niazov T, Markovitch G, Willner I (2004) Catalytic growth of Au nanoparticles by NAD(P)H cofactors: optical sensors for NADP(+)-dependent biocatalyzed transformations. Angew Chem Int Ed 43:4519–4522

    Article  CAS  Google Scholar 

  92. Marks LD (1994) Experimental studies of small particle structures. Rep Prog Phys 57:603–649

    Article  CAS  Google Scholar 

  93. Wang ZL, Mohamed MB, Link S, El-Sayed MA (1999) Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci 440:809–814

    Article  Google Scholar 

  94. Doron A, Katz E, Willner I (1995) Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir 11:1313–1317

    Article  CAS  Google Scholar 

  95. Lu W, Singh AK, Khan SA, Senapati D, Yu H, Ray PC (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 132:18103–18114

    Article  CAS  Google Scholar 

  96. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994

    Article  CAS  Google Scholar 

  97. Lipgens S, Schubel D, Schlicht L, Spilgies JH, Ilgenfritz G (1998) Percolation in nonionic water-in-oil—microemulsion systems: a small angle neutron scattering study. Langmuir 14:1041–1049

    Article  CAS  Google Scholar 

  98. Jana NR, Patra PK, Saha A, Basiruddin SK, Pradhan N (2009) Imidazole based biocompatible polymer coating in deriving <25 nm functional nanoparticle probe for cellular imaging and detection. J Phys Chem C 113:21484–21492

    Article  CAS  Google Scholar 

  99. Olteanu NL, Meghea A, Enachescu M, Mihaly M (2013) Tunning gold nanoparticles size and surface charge by oil-in-water microemulsion template. Dig J Nanomaterials Biostructures 8:1687–1697

    Google Scholar 

  100. Long NN, Vu LV, Kiem CD, Doanh SC, Nguyet CT, Hang PT, Thien ND, Quynh LM (2009) Synthesis and optical properties of colloidal gold nanoparticles. J Phys: Conf Series 187:1

    Google Scholar 

  101. Yang S, Wang Y, Wang Q, Zhang R, Ding B (2005) UV irradiation induced formation of Au nanoparticles at room temperature: the case of pH values. Colloid Surf A 301:174–183

    Article  CAS  Google Scholar 

  102. Zhou J, Ralston J, Sedev R, Beatie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Coll Intef Sci 331:251–262

    Article  CAS  Google Scholar 

  103. Chen G, Takezawa M, Kawazoe N, Tateishi T (2008) Preparation of cationic gold nanoparticles for gene delivery. Open Biotech J 2:152–156

    Article  Google Scholar 

  104. Yun JV, Li B, Cao R (2010) Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019

    Article  CAS  Google Scholar 

  105. Liao YH, Chang YJ, Chen YR (2012) Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8:3631–3639

    Article  CAS  Google Scholar 

  106. DeLong RK, Reynolds CM, Malcom Y, Schaeffer A, Severs T, Wanekaya A (2010) Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol Sci Appl 3:53–63

    Article  CAS  Google Scholar 

  107. Ahmed M, Deng Z (2009) Study of transfection efficiencies of cationic glyconanoparticles of different sizes in human cell line. ACS Appl Mater Interf 1:1980–1987

    Article  CAS  Google Scholar 

  108. Gong J (2012) Structure and surface chemistry of gold-based model catalysts. Chem Rev 112:2987–3054

    Article  CAS  Google Scholar 

  109. Önal Y, Schimpf S, Claus P (2004) Structure sensitivity and kinetics of d-glucose oxidation to d-gluconic acid over carbon-supported gold catalysts. J Catal 223:122–133

    Article  CAS  Google Scholar 

  110. Bond GC, Louis C, Thompson DT (eds) (2006) Catalysis by gold. Imperial College Press, London

    Google Scholar 

  111. Zhang Q, Lee I, Joo JB, Zaera F, Yin Y (2013) Core-shell nanostructured catalysts. Acc Chem Res 46:1816–1824

    Article  CAS  Google Scholar 

  112. Zeng HC (2013) Integrated nanocatalysts. Acc Chem Res 46:226–235

    Article  CAS  Google Scholar 

  113. Cho SJ, Kauzlarich SM, Olamit J, Liu K, Grandjean F, Rebbouh L, Long GJ (2004) Characterization and magnetic properties of core/shell structured Fe/Au nanoparticles. J Appl Phys 95:6804–6806

    Article  CAS  Google Scholar 

  114. Cho SJ, Idrobo JC, Olamit J, Liu K, Browning ND, Kauzlarich SM (2005) Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem Mater 17:3181–3186

    Article  CAS  Google Scholar 

  115. Zhang J, Worley J, Denommee S, Kingston C, Jakubek ZJ, Deslandes Y, Post M, Simard B (2003) Synthesis of metal alloy nanoparticles in solution by laser irradiation of a metal powder suspension. J Phys Chem B 107:6920–6923

    Article  CAS  Google Scholar 

  116. Zhang J, Post M, Veres T, Jakubek ZJ, Guan J, Wang D, Normandin F, Deslandes Y, Simard B (2006) Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles. J Phys Chem B 110:7122–7128

    Article  CAS  Google Scholar 

  117. Lin XM, Sorensen CM, Klabunde KJ, Hajupanayis GC (1999) Control of cobalt nanoparticle size by the germ growth method in inverse micelle system: size dependent magnetic properties. J Mater Res 14:1542–1547

    Article  CAS  Google Scholar 

  118. Wilcoxon JP, Provencio PP (2004) Heterogeneous growth of metal clusters from solutions of seed nanoparticles. J Am Chem Soc 126:6402–6408

    Article  CAS  Google Scholar 

  119. Wilcoxon JP, Provencio P (2003) Etching and aging effects in nanosize Au clusters investigated using high-resolution size-exclusion chromatography. J Phys Chem B 107:12949–12957

    Article  CAS  Google Scholar 

  120. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786

    Article  CAS  Google Scholar 

  121. Zheng N, Fan J, Stucky GD (2006) One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am Chem Soc 128:6550–6551

    Article  CAS  Google Scholar 

  122. Ayyappan S, Srinivasa GR, Subbanna GN, Rao CNR (1997) Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J Mater Res 12:398–401

    Article  CAS  Google Scholar 

  123. Longenberger L, Mills G (1995) Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers. J Phys Chem 99:475–478

    Article  CAS  Google Scholar 

  124. Scott RWJ, Ye H, Henriquez RR, Crooks RM (2003) Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles. Chem Mater 15:3873–3878

    Article  CAS  Google Scholar 

  125. Pak J, Yoo H (2013) Facile synthesis of spherical nanoparticles with a silica shell and multiple Au nanodots as the core. J Mater Chem A 1:5408–5413

    Article  CAS  Google Scholar 

  126. Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17:657–669

    Article  CAS  Google Scholar 

  127. Fournier RO, Rowe JJ (1977) The solubility of amorphousilica in water at high temperatures and high pressure. Am Mineral 62:1052–1056

    CAS  Google Scholar 

  128. Wong YJ, Zhu L, Teo WS, Tan YW, Yang Y, Wang C, Chen H (2011) Revisiting the Stöber method: inhomogeneity in silica shells. J Am Chem Soc 113:11422–11425

    Article  CAS  Google Scholar 

  129. Pak J, Yoo H (2014) Synthesis and catalytic performance of multiple gold nanodots core-mesoporous silica shell nanoparticles. Microporous Mesoporous Mater 185:107–112

    Article  CAS  Google Scholar 

  130. Park JC, Song H (2011) Metal@Silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res 4:33–49

    Article  CAS  Google Scholar 

  131. Hu Y, Zhang Q, Goebl J, Zhang T, Yin Y (2010) Control over the permeation of silica nanoshells by surface-protected etching with water. Phys Chem Chem Phys 12:11836–11842

    Article  CAS  Google Scholar 

  132. Zhang Q, Lee I, Ge J, Zaera F, Yin Y (2010) Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts. Adv Funct Mater 20:2201–2214

    Article  CAS  Google Scholar 

  133. Yu Q, Wang P, Hu S, Hui J, Zhuang J, Wang X (2011) Hydrothermal synthesis of hollow silica spheres under acidic conditions. Langmuir 27:7185–7191

    Article  CAS  Google Scholar 

  134. Aslan K, Perez-Luna VH (2002) Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant. Langmuir 18:6059–6065

    Article  CAS  Google Scholar 

  135. Sistach S, Rahme K, Perignon N, Marty JD, Viguerie NLD, Gauffre F, Mingotaud C (2008) Bolaamphiphile surfactants as nanoparticle stabilizers: application to reversible aggregation of gold nanoparticles. Chem Mater 20:1221–1223

    Article  CAS  Google Scholar 

  136. Wuelfing WP, Gross SM, Miles DT, Murray RW (1998) Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J Am Chem Soc 120:12696–12697

    Article  CAS  Google Scholar 

  137. Schneider G, Decher G (2008) Functional core/shell nanoparticles via layer-by-layer assembly Investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability. Langmuir 24:1778–1789

    Article  CAS  Google Scholar 

  138. Quaroni L, Chumanov G (1999) Preparation of polymer-coated functionalized silver nanoparticles. J Am Chem Soc 121:10642–10643

    Article  CAS  Google Scholar 

  139. Raula J, Shan J, Nuopponen M, Niskanen A, Jiang H, Kauppinen EI, Tenhu H (2003) Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-additionfragmentation chain-transfer polymerization. Langmuir 19:3499–3504

    Article  CAS  Google Scholar 

  140. Ohno K, Koh K, Tsujii Y, Fukuda T (2002) Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerization. Macromolecules 35:8989–8993

    Article  CAS  Google Scholar 

  141. Phillips MA, Gran ML, Peppas NA (2010) Targeted nanodelivery of drugs and diagnostics. Nano Today 5:143–159

    Article  CAS  Google Scholar 

  142. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  143. Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  CAS  Google Scholar 

  144. Shou Q, Guo C, Yang L, Jia L, Liu C, Liu H (2011) Effect of pH on the single-step synthesis of gold nanoparticles using PEO–PPO–PEO triblock copolymers in aqueous media. J Colloid Interface Sci 363:481–489

    Article  CAS  Google Scholar 

  145. Falletta E, Ridi F, Fratini E, Vannucci C, Canton P, Bianchi S, Castelvetro V, Baglioni P (2011) A tri-block copolymer templated synthesis of gold nanostructures. J Colloid Interface Sci 357:88–94

    Article  CAS  Google Scholar 

  146. Fustin CA, Colard C, Filali M, Guillet P, Duwez AS, Meier MAR, Schubert US, Gohy JF (2006) Tuning the hydrophilicity of gold nanoparticles templated in star block copolymers. Langmuir 22:6690–6695

    Article  CAS  Google Scholar 

  147. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    Article  CAS  Google Scholar 

  148. Leong WL, Lee PS, Lohani A, Lan YM, Chen T (2008) Non-volatile organic memory applications enabled by in situ synthesis of gold nanoparticles in a self-assembled block copolymer. Adv Mater 20:2325–2331

    Article  CAS  Google Scholar 

  149. Papp S, Korösi L, Gool B, Dederichs T, Mela P, Möller M, Dékány I (2010) Formation of gold nanoparticles in diblock copolymer micelles with various reducing agents. J Therm Anal Calorim 101:865–872

    Article  CAS  Google Scholar 

  150. Khullar P, Singh V, Mahal A, Kaur H, Singh V, Banipal TS, Kaur G, Bakshi MS (2011) Tuning shape and size of gold nanoparticles with triblock polymer micelle structure transitions and environments. J Phys Chem C 115:10442–10454

    Article  CAS  Google Scholar 

  151. Liu J, Niu J, Yin L, Jiang F (2011) In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring. Analyst 136:4802–4808

    Article  CAS  Google Scholar 

  152. Cuenya BR, Baeck SH, Jaramillo TF, McFarland EW (2003) Size-and support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles. J Am Chem Soc 125:12928–12934

    Article  CAS  Google Scholar 

  153. Lopez SG, Castro E, Taboada P, Mosquera V (2008) Block copolymer-mediated synthesis of size-tunable gold nanospheres and nanoplates. Langmuir 24:13186–13196

    Article  CAS  Google Scholar 

  154. Sakai T, Alexandridis P (2005) Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J Phys Chem B 109:7766–7777

    Article  CAS  Google Scholar 

  155. Khullar P, Mahal A, Singh V, Banipal TS, Kaur G, Bakshi MS (2010) How PEO–PPO–PEO triblock polymer micelles control the synthesis of gold nanoparticles: temperature and hydrophobic effects. Langmuir 26:11363–11371

    Article  CAS  Google Scholar 

  156. Azzam T, Eisenberg A (2007) Monolayer-protected gold nanoparticles by the self-assembly of micellar poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymer. Langmuir 23:2126–2132

    Article  CAS  Google Scholar 

  157. Lee Y, Park TG (2011) Facile fabrication of branched gold nanoparticles by reductive hydroxyphenol derivatives. Langmuir 27:2965–2971

    Article  CAS  Google Scholar 

  158. Barros Scaravelli RC, Dazzi R, Giacomelli FC, Machado G, Giacomelli C, Schmidt V (2013) Direct synthesis of coated gold nanoparticles mediated by polymers with amino groups. J Colloid Interf Sci 397:114–121

    Article  CAS  Google Scholar 

  159. Schmidt V, Borsali R, Giacomelli C (2009) Aggregation of a versatile triblock copolymer into pH-responsive cross-linkable nanostructures in both organic and aqueous media. Langmuir 25:13361–13367

    Article  CAS  Google Scholar 

  160. Giacomelli FC, Stepanek P, Giacomelli C, Schmidt V, Jager E, Jager A, Ulbrich K (2011) pH-triggered block copolymer micelles based on a pH-responsive PDPA (poly[2-(diisopropylamino)ethyl methacrylate]) inner core and a PEO (poly(ethylene oxide)) outer shell as a potential tool for the cancer therapy. Soft Matter 7:9316–9325

    Article  CAS  Google Scholar 

  161. Sabir TS, Yan D, Milligan JR, Aruni AW, Nick KE, Ramon RH, Hughes JA, Chen Q, Kurti RS, Perry CC (2012) Kinetics of gold nanoparticle formation facilitated by triblock copolymers. J Phys Chem C 116:4431–4441

    Article  CAS  Google Scholar 

  162. Liu S, Weaver JVM, Tang Y, Billingham NC, Armes SP, Tribe K (2002) Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers. Macromolecules 35:6121–6131

    Article  CAS  Google Scholar 

  163. Njoki PN, Luo J, Kamundi MM, Lim S, Zhong CJ (2010) Aggregative growth in the size-controlled growth of monodispersed gold nanoparticles. Langmuir 26:13622–13629

    Article  CAS  Google Scholar 

  164. Shields SP, Richards VN, Buhro WE (2010) Nucleation control of size and dispersity in aggregative nanoparticle growth A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem Mater 22:3212–3225

    Article  CAS  Google Scholar 

  165. Streszewski B, Jaworski W, Paclawski K, Csapó E, Dékány I, Fitzner K (2012) Gold nanoparticles formation in the aqueous system of gold (III) chloride complex ions and hydrazine sulfate-kinetic studies. Colloids Surf A 397:63–72

    Article  CAS  Google Scholar 

  166. Yuan JJ, Schmid A, Armes SP, Lewis AL (2006) Facile synthesis of highly biocompatible poly(2-(methacryloyloxy)ethyl phosphorylcholine)-coated gold nanoparticles in aqueous solution. Langmuir 22:11022–11027

    Article  CAS  Google Scholar 

  167. Ray D, Aswal VK, Kohlbrecher J (2011) Synthesis and characterization of high concentration block copolymer-mediated gold nanoparticles. Langmuir 27:4048–4056

    Article  CAS  Google Scholar 

  168. Newman JDS, Blanchard GJ (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22:5882–5887

    Article  CAS  Google Scholar 

  169. Vo CD, Armes SP, Randall DP, Sakai K, Biggs S (2006) Synthesis of zwitterionic diblock copolymers without protecting group chemistry. Macromolecules 40:157–167

    Article  CAS  Google Scholar 

  170. Park HH, Park H, Jamison AC, Lee TR (2014) Colloidal stability evolution and completely reversible aggregation of gold nanoparticles functionalized with rationally designed free radical initiators. Coll Polym Sci 292:411–421

    Article  CAS  Google Scholar 

  171. Park HH, Lee TR (2011) Thermo- and pH-responsive hydrogelcoated gold nanoparticles prepared from rationally designed surface-confined initiators. J Nanopart Res 13:2909–2918

    Article  CAS  Google Scholar 

  172. Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP (2005) Biological applications of localised surface plasmonic phenomenae. IEE Proc Nanobiotechnol 152:13–32

    Article  CAS  Google Scholar 

  173. Eck D, Helm CA, Wagner NJ, Vaynberg KA (2001) Plasmon resonance measurements of the adsorption and adsorption kinetics of a biopolymer onto gold nanocolloids. Langmuir 17:957–960

    Article  CAS  Google Scholar 

  174. Rahme K, Gauffre F, Marty JD, Payre B, Mingotaud C (2007) A systematic study of the stabilization in water of gold nanoparticles by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers. J Phys Chem C 111:7273–7279

    Article  CAS  Google Scholar 

  175. Liu YL, Shipton MK, Ryan J, Kaufman ED, Franzen S, Feldheim DL (2007) Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers. Anal Chem 79:2221–2229

    Article  CAS  Google Scholar 

  176. Li DX, He Q, Zhu HF, Tao C, Li JB (2007) Enhanced dispersity of gold nanoparticles modified by omega-carboxyl alkanethiols under the impact of poly(ethylene glycol)s. J Nanosci Nanotechnol 7:3089–3094

    Article  CAS  Google Scholar 

  177. Manna A, Imae T, Yogo T, Aoi K, Okazaki M (2002) Synthesis of gold nanoparticles in a winsor ii type microemulsion and their characterization. J Colloid Interface Sci 256:297–303

    Article  CAS  Google Scholar 

  178. Castner DG, Hinds K, Grainger DW (1996) X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 12:5083–5086

    Article  CAS  Google Scholar 

  179. Wenzler LA, Moyes GL, Raikar GN, Hansen RL, Harris JM, Beebe TP, Wood LL, Saavedra SS (1997) Measurements of single-molecule bond rupture forces between self-assembled monolayers of organosilanes with the atomic force microscope. Langmuir 13:3761–3768

    Article  CAS  Google Scholar 

  180. Resch R, Baur C, Bugacov A, Koel BE, Echternach PM, Madhukar A, Montoya N, Requicha AAG, Will P (1999) Linking and manipulation of gold multinanoparticle structures using dithiols and scanning force microscopy. J Phys Chem B 103:3647–3650

    Article  CAS  Google Scholar 

  181. Wang H, Kundu J, Halas NJ (2007) Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate. Angew Chem Int Ed 46:9040–9044

    Article  CAS  Google Scholar 

  182. Jin CM, Zhou HH, Wei W, Narayan R (2006) Three-dimensional self-organization of crystalline gold nanoparticles in amorphous alumina. Appl Phys Lett 89:261103/1–261103/3

    Google Scholar 

  183. Rowe MP, Plass KE, Kim K, Kurdak C, Zellers ET, Matzger AJ (2004) Single-phase synthesis of functionalized gold nanoparticles. Chem Mater 16:3513–3517

    Article  CAS  Google Scholar 

  184. Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 15 to 52 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30

    Article  CAS  Google Scholar 

  185. Woehrle GH, Brown LO, Hutchison JE (2005) Thiol-functionalized, 15-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange. J Am Chem Soc 127:2172–2183

    Article  CAS  Google Scholar 

  186. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  187. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J Chem Soc, Chem Commun 801–802

    Google Scholar 

  188. Chaikin Y, Leader H, Popovitz-Biro R, Vaskevich A, Rubinstein I (2011) Versatile scheme for the step-by-step assembly of nanoparticle multilayers. Langmuir 27:1298–1307

    Article  CAS  Google Scholar 

  189. Nair SS, John SA, Sagara T (2009) Simultaneous determination of paracetamol and ascorbic acid using tetraoctylammonium bromide capped gold nanoparticles immobilized on 1,6-hexanedithiol modified Au electrode. Electrochim Acta 54:6837–6843

    Article  CAS  Google Scholar 

  190. Brust M, Etchenique R, Calvo EJ, Gordillo GJ (1996) The self-assembly of gold and SCd nanoparticle multilayer structures studied by quartz crystal microgravimetry. Chem Commun 1949–1950

    Google Scholar 

  191. Edgar JA, McDonaph AM, Cortie MB (2012) Formation of gold nanorods by a stochastic “popcorn” mechanism. ACS Nano 6:1116–1125

    Article  CAS  Google Scholar 

  192. Yong KT, Swihart MT, Ding H, Prasad PN (2009) Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging. Plasmonics 4:79–93

    Article  CAS  Google Scholar 

  193. Moon SY, Kusunose T, Sekino T (2009) CTAB-assisted synthesis of size- and shape-controlled gold nanoparticles in SDS aqueous solution. Mater Lett 63:2038–2040

    Article  CAS  Google Scholar 

  194. Farren-Dai M, Awoonor-Williams E, MacNeil CS, Mahimwalla Z, Ghandi K (2014) A novel gold nanoparticle stabilization and its muon chemistry. Chem Phys Lett 610–611:331–334

    Article  CAS  Google Scholar 

  195. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed Engl 44:7852–7872

    Article  CAS  Google Scholar 

  196. Schrekker HS, Gelesky MA, Stracke MP, Schrekker CML, Machado G, Teixeira SR, Rubim JC, Dupont J (2007) Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(0) nanoparticles. J Colloid Interface Sci 316:189–195

    Article  CAS  Google Scholar 

  197. Thomas KG, Kamat PV (2003) Chromophore-functionalized gold nanoparticles. Acc Chem Res 36:888–898

    Article  CAS  Google Scholar 

  198. Rao CNR, Matte HSSR, Voggu R, Govindaraj A (2012) Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans 41:5089–5120

    Article  CAS  Google Scholar 

  199. Schulz-Dobrick M, Sarathy KV, Jansen M (2005) Surfactant-free synthesis and functionalization of gold nanoparticles. J Am Chem Soc 127:12816–12817

    Article  CAS  Google Scholar 

  200. Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511

    Article  CAS  Google Scholar 

  201. Capdevielle P, Lavigne A, Sparfel D, Baranne-Lafont J, Cuong NK, Maumy M (1990) Mechanism of primary aliphatic amines oxidation to nitriles by the cuprouschloride-dioxygen-pyridine system. Tetrahedron Lett 31:3305–3308

    Article  CAS  Google Scholar 

  202. Privman V, Goia DV, Park J, Matijevic E (1999) Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J Colloid Interface Sci 213:36–45

    Article  CAS  Google Scholar 

  203. Brown LO, Hutchison JE (2001) Formation and electron diffraction studies of ordered 2-D and 3-D superlattices of amine-stabilized gold nanoparticles. J Phys Chem B 105:8911–8916

    Article  CAS  Google Scholar 

  204. Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124:2305–2311

    Article  CAS  Google Scholar 

  205. Fink J, Kiely CJ, Bethell D, Schiffrin DJ (1998) Self-organization of nanosized gold particles. Chem Mater 10:922–926

    Article  CAS  Google Scholar 

  206. Li Y, Wu Y, Ong BS (2005) Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc 127:3266–3267

    Article  CAS  Google Scholar 

  207. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    Article  CAS  Google Scholar 

  208. Yu WW, Peng X (2002) Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew Chem Int Ed 41:2368–2371

    Article  CAS  Google Scholar 

  209. Chen M, Wang LY, Han JT, Zhang JY, Li ZY, Qian DJ (2006) Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process. J Phys Chem B 110:11224–11231

    Article  CAS  Google Scholar 

  210. Hada H, Yonezawa Y, Yoshida A, Kurakake A (1976) Photoreduction of silver ion in aqueous and alcoholic solutions. J Phys Chem 80:2728–2731

    Article  CAS  Google Scholar 

  211. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539

    Article  CAS  Google Scholar 

  212. Odian G (2004) Principles of Polymerization, 4th Ed. Wiley, New Jersey, p 297

    Google Scholar 

  213. Cheng DM, Xia HB, Chan HSO (2004) Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres. Langmuir 20:9909–9912

    Article  CAS  Google Scholar 

  214. Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59

    Article  CAS  Google Scholar 

  215. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Article  CAS  Google Scholar 

  216. Hussain I, Graham S, Wang ZX, Tan B, Sherrington DC, Rannard SP, Cooper AI, Brust M (2005) Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J Am Chem Soc 127:16398–16399

    Article  CAS  Google Scholar 

  217. Wang ZX, Tan B, Hussain I, Schaeffer N, Wyatt MF, Brust M, Cooper AI (2007) Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 23:885–895

    Article  CAS  Google Scholar 

  218. Schaeffer N, Tan B, Dickinson C, Rosseinsky MJ, Laromaine A, McComb DW, Stevens MM, Wang Y, Petit L, Barentin C, Spiller DG, Cooper AI, Levy R (2008) Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 11–17 nm size range. Chem Commun 3986–3988

    Google Scholar 

  219. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely CJ (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc, Chem Commun 1655–1656

    Google Scholar 

  220. Hostetler MJ, Green SJ, Stockes JJ, Murray RW (1996) Monolayers in three dimensions: synthesis and electrochemistry of omega-functionalized alkanethiolate-stabilized gold cluster compounds. J Am Chem Soc 118:4212–4213

    Article  CAS  Google Scholar 

  221. Li Y, Zaluzhna O, Xu B, Gao Y, Modest JM, Tong YJ (2011) Mechanistic insights into the Brust-Schiffrin two-phase synthesis of organo-chalcogenate-protected metal nanoparticles. J Am Chem Soc 133:2092–2095

    Article  CAS  Google Scholar 

  222. Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343–362

    Article  CAS  Google Scholar 

  223. Zaluzhna O, Li Y, Zangmeister C, Alison TC, Tong YJ (2012) Mechanistic insights on one-phase vs two-phase Brust-Schiffrin method synthesis of Au nanoparticles with dioctyl-diselenides. Chem Commun 48:362–364

    Article  CAS  Google Scholar 

  224. Vitale F, Fratoddi I, Battocchio C, Piscopiello E, Tapfer L, Russo MV, Polzonetti G, Giannini C (2011) Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization. Nanoscale Res Lett 6:103

    Article  Google Scholar 

  225. Kanaras AG, Kamounah FS, Schaumburg K, Kiely CJ, Brust M (2002) Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chem Commun 2294–2295

    Google Scholar 

  226. Miesch C, Kosif I, Lee E, Kim JK, Russell TP, Hayward RC, Emrick T (2012) Nanoparticle-stabilized double emulsions and compressed droplets. Angew Chem Int Ed 51:145–149

    Article  CAS  Google Scholar 

  227. Hao Y, Yang X, Song S, Huang M, He C, Cui M, Chen J (2012) Exploring the cell uptake mechanism of phospholipid and polyethylene glycol coated gold nanoparticles. Nanotechnology 23:045103

    Article  CAS  Google Scholar 

  228. Hamad-Schifferli K, Schwartz JJ, Santos AT, Zhang S, Jacobson JM (2000) Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415:152–155

    Article  Google Scholar 

  229. Shem PM, Sardar R, Shumaker-Parry JS (2014) Soft ligand stabilized gold nanoparticles: Incorporation of bipyridyls and two-dimensional assembly. J Colloid Interf Sci 426:107–116

    Article  CAS  Google Scholar 

  230. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  231. Motte L, Pileni MP (1998) Influence of length of alkyl chains used to passivate silver sulfide nanoparticles on two- and three-dimensional self-organization. J Phys Chem B 102:4104–4109

    Article  CAS  Google Scholar 

  232. Woehrle GH, Warner MG, Hutchison JE (2004) Molecular-level control of feature separation in one-dimensional nanostructure assemblies formed by biomolecular nanolithography. Langmuir 20:5982–5988

    Article  CAS  Google Scholar 

  233. Templeton AC, Pietron JJ, Murray RW, Mulvaney P (2000) Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J Phys Chem B 104:564–570

    Article  CAS  Google Scholar 

  234. Chen CF, Tzeng SD, Chen HY, Lin KJ, Gwo S (2008) Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling. J Am Chem Soc 130:824–826

    Article  CAS  Google Scholar 

  235. Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7:1113–1118

    Article  CAS  Google Scholar 

  236. Sardar R, Shumaker-Parry JS (2009) 9-BBN induced synthesis of nearly monodisperse ω-functionalized alkylthiols stabilized gold nanoparticles. Chem Mater 21:1167–1169

    Article  CAS  Google Scholar 

  237. Leontowich AFG, Calver CF, Dasog M, Scott RWJ (2010) Surface properties of water-soluble glycine-cysteamine-protected gold clusters. Langmuir 26:1285–1290

    Article  CAS  Google Scholar 

  238. Gupta RK, Srinivasan MP, Dharmarajan R (2011) Synthesis of short chain thiol capped gold nanoparticles, their stabilization and immobilization on silicon surface. Colloid Surf A 390:149–156

    Article  CAS  Google Scholar 

  239. Ackerson CJ, Jadzinsky PD, Sexton JZ, Bushnell DA, Kornberg RD (2010) Synthesis and bioconjugation of 2 and 3 nm-diameter gold nanoparticles. Bioconjugate Chem 21:214–218

    Article  CAS  Google Scholar 

  240. Müller CI, Lambert C (2011) Electrochemical and optical characterization of triarylamine functionalized gold nanoparticles. Langmuir 27:5029–5039

    Article  CAS  Google Scholar 

  241. Stoeva SI, Prasad BLV, Uma S, Stoimenov PK, Zaikovski V, Sorensen CM, Klabunde KJ (2003) Face-centered cubic and hexagonal closed-packed nanocrystal superlattices of gold nanoparticles prepared by different methods. J Phys Chem B 107:7441–7448

    Article  CAS  Google Scholar 

  242. Brown LO, Hutchison JE (1999) Controlled growth of gold nanoparticles during ligand exchange. J Am Chem Soc 121:882–883

    Article  CAS  Google Scholar 

  243. Shimizu T, Teranishi T, Hasegawa S, Miyake M (2003) Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. J Phys Chem B 107:2719–2724

    Article  CAS  Google Scholar 

  244. Dennis NW, Muhoberac BB, Newton JC, Kumbhar A, Sardar R (2014) Correlated optical spectroscopy and electron microscopy studies of the slow Ostwald-ripening growth of silver nanoparticles under controlled reducing conditions. Plasmonics 9:111–120

    Article  CAS  Google Scholar 

  245. Mulvaney P (1996) Surface plasmon spectroscopy of nano sized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  246. Sardar R, Shumaker-Parry JS (2011) Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size. J Am Chem Soc 133:8179–8190

    Article  CAS  Google Scholar 

  247. Polte J, Erler R, Thunemann AF, Sokolov S, Ahner TT, Rademann K, Emmerling F, Kraehnert R (2010) Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano 4:1076–1082

    Article  CAS  Google Scholar 

  248. Polte J, Tuaev X, Wuithschick M, Fischer A, Thuenemann AF, Rademann K, Kraehnert R, Emmerling F (2012) Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6:5791–5802

    Article  CAS  Google Scholar 

  249. Bootharaju MS, Pradeep T (2010) Uptake of toxic metal ions from water by naked and monolayer protected silver nanoparticles: an Xray photoelectron spectroscopic investigation. J Phys Chem C 114:8328–8336

    Article  CAS  Google Scholar 

  250. Qian H, Zhu M, Wu Z, Jin R (2012) Quantumsized gold nanoclusters with atomic precision. Acc Chem Res 45:1470–1479

    Article  CAS  Google Scholar 

  251. Gronbeck H (2012) The bonding in thiolate protected gold nanoparticles from Au4f photoemission core level shifts. Nanoscale 4:4178–4182

    Article  CAS  Google Scholar 

  252. Hakkinen H (2012) The gold-sulfur interface at the nanoscale. Nat Chem 4:443–455

    Article  CAS  Google Scholar 

  253. Shankar R, Shahi V, Sahoo U (2010) Comparative study of linear poly(alkylarylsilane)s as reducing agents toward Ag(I) and Pd(II) ions, synthesis of polymer, metal nanocomposites with variable size domains of metal nanoparticles. Chem Mater 22:1367–1375

    Article  CAS  Google Scholar 

  254. Skrdla PJ (2012) Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease. Langmuir 28:4842–4857

    Article  CAS  Google Scholar 

  255. Van Hyning DL, Klemperer WG, Zukoski CF (2001) Silver nanoparticle formation: predictions and verification of the aggregative growthmodel. Langmuir 17:3128–3135

    Article  CAS  Google Scholar 

  256. Chuit C, Corriu RJP, Reye C, Young JC (1993) Reactivity of pentaand hexacoordinate silicon compounds and their role as reaction intermediates. Chem Rev 93:1371–1448

    Article  CAS  Google Scholar 

  257. Kano N, Komatsu F, Yamamura M, Kawashima T (2006) Reversible photoswitching of the coordination numbers of silicon in organosilicon compounds bearing a 2-(Phenylazo)phenyl group. J Am Chem Soc 128:7097–7109

    Article  CAS  Google Scholar 

  258. Yeshchenko O, Dmitruk I, Alexeenko A, Kotko A, Verdal J, Pinchuk A (2012) Size and temperature effects on the surface plasmon resonance in silver nanoparticles. Plasmonics 7:685–694

    Article  CAS  Google Scholar 

  259. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712

    Article  CAS  Google Scholar 

  260. Ojea-Jimenez I, Bastus NG, Puntes V (2011) Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles. J Phys Chem C 115:15752–15757

    Article  CAS  Google Scholar 

  261. Bastus NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105

    Article  CAS  Google Scholar 

  262. Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948

    Article  CAS  Google Scholar 

  263. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  264. Roth PJ, Theato P (2008) Versatile synthesis of functional gold nanoparticles: grafting polymers from and onto. Chem Mater 20:1614–1621

    Article  CAS  Google Scholar 

  265. Shem PM, Sardar R, Shumaker-Parry JS (2009) One-step synthesis of phosphine-stabilized gold nanoparticles using the mild reducing agent 9-BBN. Langmuir 25:13279–13283

    Article  CAS  Google Scholar 

  266. Huang J, Kim F, Tao AR, Connor S, Yang P (2005) Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat Mater 4:896–900

    Article  CAS  Google Scholar 

  267. Prasad BLV, Sorensen CM, Klabunde KJ (2008) Gold nanoparticle superlattices. Chem Soc Rev 37:1871–1883

    Article  CAS  Google Scholar 

  268. Chen S, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280:2098–2101

    Article  CAS  Google Scholar 

  269. Li D, Kaner RB (2005) Shape and aggregation control of nanofibers: not shaken, not stirred. J Am Chem Soc 128:968–975

    Article  CAS  Google Scholar 

  270. Liu X, Worden JG, Huo Q, Brennan JP (2006) Kinetic study of gold nanoparticle growth in solution by Brust-Schiffrin reaction. J Nanosci Nanotechnol 6:1054–1059

    Article  CAS  Google Scholar 

  271. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  272. Liu X, Atwater M, Wang J, Dai Q, Zou J, Brennan JP, Huo Q (2007) A study on gold nanoparticle synthesis using oleylamine as both reducing agent and protecting ligand. J Nanosci Nanotechnol 7:3126–3133

    Article  CAS  Google Scholar 

  273. Sugimoto T (2000) Fine particles-synthesis, characterization, and mechanism of growth. Surfactant Sci Ser 92, Marcel Dekker, New York

    Google Scholar 

  274. Leff DV, Brandt L, Heath JR (1996) Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12:4723–4730

    Article  CAS  Google Scholar 

  275. Brown LO, Hutchison JE (1997) Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions. J Am Chem Soc 119:12384–12385

    Article  CAS  Google Scholar 

  276. Joo SW (2006) Adsorption of bipyridine compounds on gold nanoparticle surfaces investigated by UV-Vis absorbance spectroscopy and surface enhanced Raman scattering. Spectrosc Lett 39:85–96

    Article  CAS  Google Scholar 

  277. Wandlowski T, Ataka K, Mayer D (2002) In situ infrared study of 4,4′-bipyridine adsorption on thin gold films. Langmuir 18:4331–4341

    Article  CAS  Google Scholar 

  278. Noda H, Minoha T, Wan LJ, Osawa M (2000) Adsorption and ordered phase formation of 2,2′-bypyridine on Au(111): a combined surface-enhanced infrared and STM study. J Electroanal Chem 481:62–68

    Article  CAS  Google Scholar 

  279. Chong SV, Tallon JL (2010) Aqueous electrochemical insertion of Na+ into the tungsten oxide hybrid WO3(4,4′-bipyridyl)05. J Phys Chem Solids 71:303–308

    Article  CAS  Google Scholar 

  280. Hamoudi H, Döring K, Chesneau F, Lang H, Zharnikov M (2012) Self-assembly of pyridine-substituted alkanethiols on gold: the electronic structure puzzle in the ortho- and para-attachment of pyridine to the molecular chain. J Phys Chem C 116:861–870

    Article  CAS  Google Scholar 

  281. Liu W, Yang X, Xie L (2007) Size-controlled gold nanocolloids on polymer microsphere-stabilizer via interaction between functional groups and gold nanocolloids. J Colloid Interface Sci 313:494–502

    Article  CAS  Google Scholar 

  282. Zubavichus Y, Zharnikov M, Yang Y, Fuchs O, Umbach E, Heske C, Ulman A, Grunze M (2004) XPS and NEXAFS study of water adsorption on the pyridine-terminated thiolate self-assembled monolayer. Langmuir 20:11022–11029

    Article  CAS  Google Scholar 

  283. Duraiswamy S, Khan SA (2014) Dual-stage continuous-flow seedless microfluidic synthesis of anisotropic gold nanocrystals. Part Part Syst Charact 31:429–432

    Article  CAS  Google Scholar 

  284. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  285. Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322

    Article  CAS  Google Scholar 

  286. Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672

    Article  CAS  Google Scholar 

  287. Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters 1 formation and particle size variation. Langmuir 9:2301–2309

    Article  CAS  Google Scholar 

  288. Khan SA, Duraiswamy S (2012) Controlling bubbles using bubbles-microfluidic synthesis of ultra-small gold nanocrystals with gas-evolving reducing agents. Lab Chip 12:1807–1812

    Article  CAS  Google Scholar 

  289. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301

    Article  CAS  Google Scholar 

  290. Wagner J, Kohler JM (2005) Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett 5:685–691

    Article  CAS  Google Scholar 

  291. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature: Phys Sci 241:20–22

    Google Scholar 

  292. Gross S Colloidal dispersion of gold nanoparticles In: Schubert U, Hüsing N, Laine RM (eds) (2008) Materials syntheses. SpringerWien, New York, pp 155–161

    Google Scholar 

  293. Wilcoxon JP, Williamson RL, Baughman R (1993) Optical-properties of gold colloids formed in inverse micelles. J Chem Phys 98:9933–9950

    Article  CAS  Google Scholar 

  294. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  295. Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46:3128–3136

    Article  CAS  Google Scholar 

  296. Li C, Li D, Wan G, Xu J, Hou W (2011) Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls. Nanoscale Res Lett 6:440

    Article  CAS  Google Scholar 

  297. Rahman MR, Saleh FS, Okajima T, Ohsaka T (2011) pH Dependence of the size and crystallographic orientation of the gold nanoparticles prepared by seed-mediated growth. Langmuir 27:5126–5135

    Article  CAS  Google Scholar 

  298. Rohiman A, Anshori I, Surawijaya A, Idris I (2011) Study of colloidal gold synthesis using turkevich method. AIP Conf Proc 1415:39–42

    Article  CAS  Google Scholar 

  299. Kim JH, Lavin BW, Burnett RD, Boote BW (2011) Controlled synthesis of gold nanoparticles by fluorescent light irradiation. Nanotechnology 22:285602

    Article  CAS  Google Scholar 

  300. Aguilera LMC, Romano MF, Gil MLA, Rodrigurez IN, Hidalgo-Hidalgo de Cisneros JL, Santander JMP (2011) New, fast and green procedure of gold nanoparticles based on sonocatalysis. Untrason Sonochem 18:789–794

    Article  CAS  Google Scholar 

  301. Ojea-Jimenez I, Romero FM, Bastus NG, Puntes V (2010) Small gold nanoparticles synthesized with sodium citrate and heavy water: insights into the reaction mechanism. J Phys Chem C 114:1800–1804

    Article  CAS  Google Scholar 

  302. Yang TF, Chen CN, Chen MC, Lai CH, Liang HF, Sung HW (2007) Shell–crosslinked pluronic L121 micelles as a drug delivery vehicle. Biomaterials 28:725–734

    Article  CAS  Google Scholar 

  303. Huang J, Si L, Jiang L, Fan Z, Qiu J, Li G (2008) Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism. Int J Pharm 356:351–353

    Article  CAS  Google Scholar 

  304. Batrakova EV, Kabanov AV (2008) pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130:98–106

    Article  CAS  Google Scholar 

  305. Yoo HS, Park TG (2000) In vitro and in vivo anti-tumor activities of nanoparticles based on DOX–PLGA conjugates. J Control Release 68:419–431

    Article  CAS  Google Scholar 

  306. Sun CZ, Lu CT, Zhao YZ, Guo P, Tian JL, Zhang L, Li XK, Lv HF, Dai DD, Li X (2011) Characterization of the doxorubicin-pluronic F68 conjugate micelles and their effect on doxorubicin resistant human erythroleukemic cancer cells. J Nanomed Nanotechnol 2:2–6

    Google Scholar 

  307. Kabanov A, Alakhov VY (2002) pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carr Syst 19:1–72

    Article  CAS  Google Scholar 

  308. Mahmud A, Lavasanifar A (2005) The effect of block copolymer structure on the internalization of polymeric micelles by human breast cancer cells. Colloids Surf B Biointerfaces 45:82–89

    Article  CAS  Google Scholar 

  309. Al–Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Accounts of Chemical Research 44:1094–1104

    Google Scholar 

  310. Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L (2009) Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 6:43–51

    Article  CAS  Google Scholar 

  311. Grange C, Geninatti-Crich S, Esposito G, Alberti D, Tei L, Bussolati B, Aime S, Camussi G (2010) Combined delivery and magnetic resonance imaging of neural cell adhesion molecule–targeted doxorubicin–containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res 70:2180–2190

    Article  CAS  Google Scholar 

  312. de Smet M, Heijman E, Langereis S, Hijnen NM, Grüll H (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature–sensitive liposomes: an in vivo proof–of–concept study. J Control Release 150:102–110

    Article  CAS  Google Scholar 

  313. Margolis LB, Namiot VA, Kljukin LM (1983) Magnetoliposomes: another principle of cell sortingBiochim. Biophys Acta 735:193–195

    Article  CAS  Google Scholar 

  314. Hamley IW (2003) Nanotechnology with soft materials. Angew Chem Int Ed 42:1692–1712

    Article  CAS  Google Scholar 

  315. Chen CC, Lin YP, Wang CW, Tzeng HC, Wu CH, Chen YC, Chen CP, Chen LC, Wu YC (2006) DNA–gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 128:3709–3715

    Article  CAS  Google Scholar 

  316. Xu C, Xie J, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun S (2008) Au–Fe3O4 dumbbell nanoparticles as dual–functional probes. Angew Chem Int Ed Engl 47:173–176

    Article  CAS  Google Scholar 

  317. Jiang J, Gu HW, Shao HL, Devlin E, Papaefthymiou GC, Ying JY (2008) Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv Mater 20:4403–4407

    Article  CAS  Google Scholar 

  318. Xie J, Zhang F, Aronova M, Zhu L, Lin X, Quan Q, Liu G, Zhang G, Choi KY, Kim K, Sun X, Lee S, Sun S, Leapman R, Chen X (2011) Manipulating the power of an additional phase: a flower-like Au–Fe3O4 optical nanosensor for imaging protease expressions in vivo. ACS Nano 5:3043–3051

    Article  CAS  Google Scholar 

  319. Jain PK, Huang X, El–Sayed IH, El–Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Google Scholar 

  320. Melancon MP, Lu W, Li C (2009) Gold–based magneto–optical nanostructures: challenges for in vivo applications in cancer diagnostics and therapy. MRS Bull 34:415–421

    Article  CAS  Google Scholar 

  321. Mahmood U, Weissleder R (2003) Near–infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496

    CAS  Google Scholar 

  322. Hilger I, Fruhauf K, Andra W, Hiergeist R, Hergt R, Kaiser WA (2002) Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad Radiol 9:198–202

    Article  Google Scholar 

  323. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606

    Article  CAS  Google Scholar 

  324. Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim JS, Kim SK, Cho MH, Hyeon T (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed 45:7754–7758

    Article  CAS  Google Scholar 

  325. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  CAS  Google Scholar 

  326. Lim YT, Cho MY, Kim JK, Hwangbo S, Chung BH (2007) Plasmonic magnetic nanostructure for bimodal imaging and photonic-based therapy of cancer cells. ChemBioChem 8:2204–2209

    Article  CAS  Google Scholar 

  327. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  Google Scholar 

  328. Kim K, Kim JH, Park H, Kim YS, Park K, Nam H, Lee S, Park JH, Park RW, Kim IS, Choi K, Kim SY, Park K, Kwon IC (2010) Tumor–homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146:219–227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignác Capek .

Glossary

Chemotherapy

is a category of cancer treatment that uses one or more anticancer drugs (chemotherapeutic agents) as part of a standardized chemotherapy regimen. Chemotherapy may be given with a curative intent (which almost always involves combinations of drugs), or it may aim to prolong life or to reduce symptoms (palliative chemotherapy). Chemotherapy is one of the major categories of medical oncology (the medical discipline specifically devoted to pharmacotherapy for cancer).

Enhanced permeability and retention (EPR)

effect is the property by which molecules of certain sizes (typically liposomes, nanoparticles, and macromolecular drugs) tend to accumulate in tumor tissue much more than they do in normal tissues.

Hyperthermia

is elevated body temperature due to failed thermoregulation that occurs when a body produces or absorbs more heat than it dissipates. Extreme temperature elevation then becomes a medical emergency requiring immediate treatment to prevent disability or death.

Liposome

is a spherical vesicle having at least one lipid bilayer . The liposome can be used as a vehicle for administration of nutrients and pharmaceutical drugs. Liposomes can be prepared by disrupting biological membranes (such as by sonication).

Multiple drug resistance (MDR),

multidrug resistance, or multiresistance is antimicrobial resistance shown by a species of microorganism to multiple antimicrobial drugs.

Receptor tyrosine-protein kinase erbB-2

also known as CD340 (cluster of differentiation 340), proto-oncogene Neu, Erbb2 (rodent), or ERBB2 (human). It is a protein that in humans is encoded by the ERBB2 gene, and it is also frequently called HER2 (from human epidermal growth factor receptor 2) or HER2/neu. Amplification or overexpression of this oncogene has been shown to play an important role in the development and progression of certain aggressive types of breast cancer. In recent years, the protein has become an important biomarker and target of therapy for approximately 30% of breast cancer patients.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Capek, I. (2017). Stabilizers-Mediated Nanoparticles Syntheses. In: Noble Metal Nanoparticles. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56556-7_3

Download citation

Publish with us

Policies and ethics