Skip to main content

NMR Spectroscopy to Investigate Switching Reactions

  • Chapter
  • First Online:
Photon-Working Switches

Abstract

Despite its poor time resolution and low sensitivity compared with classical spectrophotometric methods, modern NMR is now a highly developed spectroscopy technique, appropriate for photochromism studies owing to its high spectral resolution and the large panel of NMR sequences that offer detailed structural and quantitative information. NMR spectroscopy can therefore be applied to answer questions concerning which compounds are produced, how they are formed, and how they evolve and behave within the photochromic reaction. In this chapter, we reported the characterization of the eight interconvertible states addressable selectively, offering the most complex multiaddressable molecule known to date; the reactivity of photochromic compounds associated with crown ethers for complexation with metal cations; and the behavior of hexaarylbiimidazole derivatives elucidated owing to a new experimental setup coupling NMR and in situ light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown GH (ed) (1971) Photochromism. Wiley-Interscience, New York

    Google Scholar 

  2. Durr H, Bouas-Laurent H (eds) (1990) Photochromism: molecules and systems. Elsevier, Amsterdam

    Google Scholar 

  3. Fukumura H, Irie M, Iwasawa Y, Masuhara H, Uosaki K (eds) (2008) Molecular nano dynamics, vols 1 and 2. Wiley VCH, Weinheim

    Google Scholar 

  4. Feringa BL, Jager WF, de Lange B (1993) Organic materials for reversible optical data storage. Tetrahedron 49:8267–8310

    Article  CAS  Google Scholar 

  5. Irie M, Mohri M (1988) Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem 53:803–808

    Article  CAS  Google Scholar 

  6. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716

    Article  CAS  Google Scholar 

  7. Van Gemert B (1999) Benzo and naphthopyrans (Chromenes). In: Crano JC, Gugliemetti RJ (eds) Organic photochromic and thermochromic compounds, vol 1. Kluwer Academic Publishers, New York, pp 111–140

    Google Scholar 

  8. Abe J (2013) Fast photochromism of bridged imadazoles dimers. In: Irie M, Yokoyama Y, Seki T (eds) New frontiers in photochromism. Springer, Japan, pp 161–181

    Chapter  Google Scholar 

  9. Andréasson J, Pischel U (2013) Storage and processing of information using molecules: the all-photonic approach with simple and multi-photochromic switches. Isr J Chem 53:236–246

    Article  Google Scholar 

  10. Sanguinet L, Pozzo JL, Rodriguez V, Adamietz F, Castet F, Ducasse L, Champagne B (2005) Acido- and phototriggered NLO properties enhancement. J Phys Chem B 109:11139–11150

    Article  CAS  Google Scholar 

  11. Petkov I, Charra F, Nunzi JM, Deligeorgiev T (1999) Photochemistry of 2-[(1,3,3-trimethylindoline-2(1H)-ylidene)propen-1-yl]-3,3-dimethylindolino[1,2-b]-oxazolidine in solution. J Photochem Photobiol A 128:93–96

    Article  CAS  Google Scholar 

  12. Sertova N, Ninzu JM, Petkov I, Deligeorgiev T (1998) Photochromism of styryl cyanine dyes in solution. J Photochem Photobiol A 112:187–190

    Article  CAS  Google Scholar 

  13. Kawami S, Yoshioka H, Nakatsu K, Okozaki T, Hayami M (1987) X-ray structures of electrochromic compounds. Colorless 3,3-dimethyl-2-(p-dimethylaminostyryl)indolino-[1,2-b]oxazoline and colored 2-(p-dimethylaminostyryl)-1-hydroxyethyl-3,3-dimethylindolinium Bromide. Chem Lett 16:711–714

    Article  Google Scholar 

  14. Szaloki G, Sevez G, Berthet J, Pozzo JL, Delbaere S (2014) A simple molecule-based octastate switch. J Am Chem Soc 136:13510–13513

    Article  CAS  Google Scholar 

  15. Gabbutt C, Heron B, Instone A, Horton P, Hursthouse M (2005) Synthesis and photochromic properties of substituted 3H-naphtho[2,1-b]pyrans. Tetrahedron 61:463–471

    Article  CAS  Google Scholar 

  16. Coelho PJ, Salvador MA, Oliveira MM, Carvalho LM (2005) Photochemical and thermal behaviour of new photochromic indeno-fused naphthopyrans. J Photochem Photobiol A 172:300–307

    Article  CAS  Google Scholar 

  17. Frigoli M, Mehl HH (2004) Room temperature photochromic liquid crystal [3H]-naphtho[2,1-b]pyrans—photochromism in the mesomorphic state. Chem Commun 18:2040–2204

    Article  Google Scholar 

  18. Inouye M, Ueno M, Tsuchiya K, Nakayama N, Konishi T, Kitao T (1992) Alkali-metal cation recognition induced isomerization of spirobenzopyrans and spironaphthoxazins possessing a crown ring as a recognition site: multifunctional artificial receptors. J Org Chem 57:5377–5383

    Article  CAS  Google Scholar 

  19. Minkin VI (2004) Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 104:2751–2776

    Article  CAS  Google Scholar 

  20. Fedorova OA, Ushakov EN, Fedorov YV, Strokach YP, Gromov SP (2005) Macrocyclic systems with photoswitchable functions. In: Gloe K (ed) Macrocyclic chemistry: current trends and future perspectives. Springer, Dordrecht, Berlin, pp 235–252

    Chapter  Google Scholar 

  21. Fedorova OA, Maurel F, Chebun’kova AV, Strokach YP, Valova TM, Kuzmina LG, Howard JAK, Wenzel M, Gloe K, Lokshin V, Samat A (2007) Investigation of cation complexation behavior of azacrown ether substituted benzochromene. J Phys Org Chem 20:469–483

    Google Scholar 

  22. Stauffer MT, Knowles DB, Brennan C, Funderburk L, Lin FT, Weber SG (1997) Optical control over Pb2+ binding to a crown ether-containing chromene. Chem Commun 3:287–288

    Article  Google Scholar 

  23. Ahmed SA, Tanaka M, Ando H, Iwamoto H, Kimura K (2003) Synthesis and photochromism of novel chromene derivatives bearing a monoazacrown ether moiety. Eur J Org Chem 2003:2437–2442

    Article  Google Scholar 

  24. Fedorova OA, Maurel F, Ushakov EN, Nazarov VB, Gromov SP, Chebunkova AV, Feofanov AV, Alaverdian IS, Alfimov MV, Barigelletti F (2003) Synthesis, photochromic behaviour and light-controlled complexation of 3,3-diphenyl-3H-benzo[f]chromenes containing a dimethylamino group or an aza-15-crown-5 ether unit. New J Chem 27:1720–1730

    Article  CAS  Google Scholar 

  25. Flink S, Boukamp BA, Van den Berg A, van Veggel FCJM, Reinhoudt DN (1998) Electrochemical detection of electrochemically inactive cations by self-assembled monolayers of crown ethers. J Am Chem Soc 120:4652–4657

    Article  CAS  Google Scholar 

  26. Flink S, van Veggel FCJM, Reinhoudt DN (1999) Recognition of cations by self-assembled monolayers of crown ethers. J Phys Chem B 103:6515–6520

    Article  CAS  Google Scholar 

  27. Paramonov S, Delbaere S, Fedorova OA, Fedorov YV, Lokshin V, Samat A, Vermeersch G (2010) Structural and photochemical aspect of metal-ion-binding to a photochromic chromene annulated by crown ether moiety. J Photochem Photobiol A 209:111–120

    Article  CAS  Google Scholar 

  28. Jeener J, Meier BH, Bachmann P, Ernst R (1979) Unified derivation of the dipolar field and relaxation terms in the bloch-redfield equations of liquid NMR. J Chem Phys 71:4546–4553

    Article  CAS  Google Scholar 

  29. Paramonov S, Lokshin V, Smolentsev AB, Glebov EM, Korolev VV, Basok SS, Lysenko KA, Delbaere S, Fedorova OA (2012) Synthesis, metal ion binding and photochromic properties of benzo- and naphthopyrans annelated by crown ether moieties. Tetrahedron 68:7873–7883

    Article  CAS  Google Scholar 

  30. Tulyakova EV, Fedorova OA, Paramonov S, Lokshin V, Vermeersch G, Delbaere S (2011) Photochromism and metal-complexation of a macrocyclic styryl naphthopyran. ChemPhysChem 12:1294–1301

    Article  CAS  Google Scholar 

  31. Pons M, Millet O (2001) Dynamic NMR studies of supramolecular complexes. Prog Nucl Mag Reson Spectrosc 38:267–324

    Article  CAS  Google Scholar 

  32. Pastor A, Martínez-Viviente E (2008) NMR spectroscopy in coordination supramolecular chemistry: a unique and powerful methodology. Coord Chem Rev 252:2314–2345

    Article  CAS  Google Scholar 

  33. Pregosin PS, Kumar PGA, Fernández I (2005) Pulsed gradient spin-echo (PGSE) diffusion and 1H,19F heteronuclear overhauser spectroscopy (HOESY) NMR methods in inorganic and organometallic chemistry: something old and something new. Chem Rev 105:2977–2998

    Article  CAS  Google Scholar 

  34. Loening NM, Keeler J, Morris GA (2001) One-dimensional DOSY. J Magn Reson 153:103–112

    Article  CAS  Google Scholar 

  35. Johnson CS Jr (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Mag Reson Spectrosc 34:203–256

    Article  CAS  Google Scholar 

  36. Hansen S (2004) Translational friction coefficients for cylinders of arbitrary axial ratios estimated by Monte Carlo simulation. J Chem Phys 121:9111–9115

    Article  CAS  Google Scholar 

  37. Allouche L, Marquis A, Lehn JM (2006) Discrimination of metallosupramolecular architectures in solution by using diffusion ordered spectroscopy (DOSY) experiments: double-stranded helicates of different lengths. Chem Eur J 12:7520–7525

    Article  CAS  Google Scholar 

  38. Tulyakova EV, Vermeersch G, Gulakova EN, Fedorova OA, Fedorov YV, Micheau JC, Delbaere S (2010) Metal ions drive thermodynamics and photochemistry of the bis(styryl) macrocyclic tweezer. Chem Eur J 16:5661–5671

    Article  CAS  Google Scholar 

  39. Tulyakova E, Delbaere S, Fedorov Y, Jonusauskas G, Moiseeva A, Fedorova OA (2011) Multimodal metal cation sensing with bis(macrocyclic) dye. Chem Eur J 17:10572–10762

    Google Scholar 

  40. Delbaere S, Tulyakova EV, Marmois E, Jonusauskas G, Gulakova EN, Fedorov Y, Fedorova OA (2013) Metal-ion induced FRET in macrocyclic dynamic tweezers. Tetrahedron 69:8178–8185

    Article  CAS  Google Scholar 

  41. Hayashi T, Maeda K (1960) Preparation of a new photptropic substance. Bull Chem Soc Jpn 33:565–566

    Article  CAS  Google Scholar 

  42. Hayashi T, Maeda K (1962) Mechanism of chemiluminescence of 2,4,5-triphenylimidazole. Bull Chem Soc Jpn 35:2057–2058

    Article  CAS  Google Scholar 

  43. Hayashi T, Maeda K (1963) A new phenomenon of storage light energy by solution of photochromatic 1,1′-Bi(2,4,5-triphenylimidazyl) at low temperatures. Bull Chem Soc Jpn 36:1052–1053

    Article  CAS  Google Scholar 

  44. Hayashi T, Maeda K, Morinaga M (1964) The mechanism of the photochromism and thermochromism of 2, 2′, 4, 4′, 5, 5′-Hexaphenyl-1,1′-biimidazolyl. Bull Chem Soc Jpn 37:1563–1564

    Article  CAS  Google Scholar 

  45. Zimmermann H, Baumgartei H, Bakke F (1961) 1.1′-Bis-pyrryle, 1.l′-Bis-imidazyle und ihre dissoziation in radikale. Angew Chem 78:808

    Google Scholar 

  46. Hayashi T, Maeda K (1970) The mechanism of photochromism, thermochromism and piezochromism of dimers of triarylimidazolyl. Bull Chem Soc Jpn 43:429–438

    Article  Google Scholar 

  47. White DM, Sonnenberg J (1966) Oxidation of triarylimidazoles. Structures of the photochromic and piezochromic dimers of triarylimidazyl radicals. J Am Chem Soc 88:3825–3829

    Article  CAS  Google Scholar 

  48. Tanino H, Kondo T, Okada K, Goto T (1972) Structures of three isomeric dimers of 2,4,5-triphenylimidazolyl. Bull Chem Soc Jpn 45:1474–1480

    Article  CAS  Google Scholar 

  49. Dessauer R (ed) (2006) Photochemistry. History and commercial applications of hexaarylbiimidazoles, Elsevier, Amsterdam

    Google Scholar 

  50. Kawano M, Sano T, Abe J, Ohashi Y (1999) The first in situ direct observation of the light-induced radical pair from a hexaarylbiimidazolyl derivative by X-ray crystallography. J Am Chem Soc 121:8106–8107

    Article  CAS  Google Scholar 

  51. Abe J, Sano T, Kawano M, Ohashi Y, Matsushita MM, Iyoda T (2001) EPR and density functional studies of light-induced radical pairs in a single crystal of a hexaarylbiimidazolyl derivative. Angew Chem Int Ed 40:580–582

    Article  CAS  Google Scholar 

  52. Fujita K, Hatano S, Kato D, Abe J (2008) Photochromism of a radical diffusion-inhibited hexaarylbiimidazole derivative with intense coloration and fast decoloration performance. Org Lett 10:3105–3108

    Article  CAS  Google Scholar 

  53. Hatano S, Abe J (2008) Activation parameters for the recombination reaction of intramolecular radical pairs generated from the radical diffusion-inhibited HABI derivative. J Phys Chem A 112:6098–6103

    Article  CAS  Google Scholar 

  54. Miyamoto Y, Kikuchi A, Iwahori F, Abe J (2005) Synthesis and photochemical properties of a photochromic Iron(II) complex of hexaarylbiimidazole. J Phys Chem A 109:10183–10188

    Article  CAS  Google Scholar 

  55. Kikuchi A, Iwahori F, Abe J (2004) Definitive evidence for the contribution of biradical character in a closed-shell molecule, derivative of 1,4-Bis-(4,5-diphenylimidazol-2-ylidene)cyclohexa-2,5-diene. J Am Chem Soc 126:6526–6527

    Article  CAS  Google Scholar 

  56. Delbaere S, Orio M, Berthet J, Sliwa M, Hatano S, Abe J (2013) Insights into the recombination of radical pairs in hexaarylbiimidazoles. Chem Commun 49:5841–5843

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am greatly indebted to my co-authors, i.e., the colleagues and students who have been engaged in the research work described here, performed within the framework of GDRI CNRS 93 “Phenics” (Photoswitchable Organic Molecular Systems & Devices).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Delbaere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Delbaere, S. (2017). NMR Spectroscopy to Investigate Switching Reactions. In: Yokoyama, Y., Nakatani, K. (eds) Photon-Working Switches. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56544-4_15

Download citation

Publish with us

Policies and ethics