Skip to main content

Ecology of Kandelia obovata (S., L.) Yong: A Fast-Growing Mangrove in Okinawa, Japan

  • Chapter
  • First Online:
Participatory Mangrove Management in a Changing Climate

Part of the book series: Disaster Risk Reduction ((DRR))

Abstract

Mangroves are the association of woody trees and shrubs in the intertidal zone of tropical and subtropical coasts. Mangroves play a significant role in carbon sequestration, as they store large amount of organic matter in their substrates and roots. This chapter focuses on the ecology of biomass production and carbon trapping potentials in the pioneer mangrove Kandelia obovata in the light of canopy radiation balance, intraspecific competition, allometric relationships, biomass allocation, net primary production and carbon sequestration. K. obovata shows a low light extinction coefficient of leaves (0.43) suggesting a shade-intolerant nature of the species. In the young stage, trees form smaller clumps that hinder each other in growth but do not lead to a significant size class differentiation. However, after ca. two decades, the self-thinning starts and a mutual inhibition of growth and size differentiation is observed. As a stand grows older, the spatial pattern of individuals becomes more regular from a clustered pattern. In the allometric equations for estimating the above-ground phytomass, the parameter D 0.1 2 H (D 0.1, diameter at one-tenth of tree height H) instead of D 2 H (D = diameter at 1.3 m height) or D performs better. At the stand age of 10 years, the species is capable of yielding an above-ground biomass of 80.5 Mg ha−1 and belowground biomass of 71.5 Mg ha−1. The above-ground net primary production estimates 29.9–32.1 Mg ha−1 year−1, which is ca. 2.8–3.0 times of annual litter fall. The low leaf longevity (9.3 months) and high growth efficiency (5.35–5.98 Mg ha−1 year−1) make it a highly productive mangrove species. The carbon stock in the above ground (35.1 Mg ha−1) is 1.3 times in the belowground (26.9 Mg ha−1). Soil C stock (57.3 Mg ha−1) is closer to the vegetation C stock (62.0 Mg ha−1), indicating that the mangrove stores a large amount of carbon in the soil. The growth efficiency and carbon trapping mechanism of the mangrove K. obovata make it a highly suitable species in the study region Okinawa Island. New plantations can be raised in the intertidal zones of Okinawa Island using K. obovata, which would in turn contribute towards carbon sequestration and climate change mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alongi DM (2011) Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environ Sci Policy 14:462–470. doi:10.1016/j.envsci.2011.02.004

    Article  Google Scholar 

  • Alongi DM, Tirendi F, Clough BF (2000) Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat Bot 68:97–122. doi:10.1016/S0304-3770(00)00110-8

    Article  Google Scholar 

  • Alongi D, Trott L, Wattayakorn G, Clough B (2002) Below-ground nitrogen cycling in relation to net canopy production in mangrove forests of southern Thailand. Mar Biol 140:855–864. doi:10.1007/s00227-001-0757-6

    Article  Google Scholar 

  • Alongi DM, Clough BF, Dixon P, Tirendi F (2003) Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17:51–60. doi:10.1007/s00468-002-0206-2

    Article  Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42

    Article  Google Scholar 

  • Ball MC, Cowan IR, Farquhar GD (1988) Maintenance of leaf temperature and the optimisation of carbon gain in relation to water loss in a tropical mangrove forest. Aust J Plant Physiol 15:263–276

    Article  Google Scholar 

  • Berger U, Hildenbrandt H (2003) The strength of competition among individual trees and the biomass-density trajectories of the cohort. Plant Ecol 167:89–96

    Article  Google Scholar 

  • Bouillon S, Dahdouh-Guebas F, Rao AVVS, Koedam N, Dehairs F (2003) Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495:33–39. doi:10.1023/A:1025411506526

    Article  Google Scholar 

  • Canham CD (1988) Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69:786–795. doi:10.2307/1941027

    Article  Google Scholar 

  • Day JW Jr, Conner WH, Ley-Lou F, Day RH, Navarro AM (1987) The productivity and composition of mangrove forests, Laguna de Términos, Mexico. Aquat Bot 27:267–284. doi:10.1016/0304-3770(87)90046-5

    Article  Google Scholar 

  • Duarte CM et al (1998) Relationship between sediment conditions and mangrove Rhizophora apiculata seedling growth and nutrient status. Mar Ecol Prog Ser 175:277–283. doi:10.3354/meps175277

    Article  Google Scholar 

  • Fromard F, Puig H, Mougin E, Marty G, Betoulle JL, Cadamuro L (1998) Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia 115:39–53. doi:10.1007/s004420050489

    Article  Google Scholar 

  • Golley F, Odum HT, Wilson RF (1962) The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43:9–19. doi:10.2307/1932034

    Article  Google Scholar 

  • Hagihara A, Hozumi K (1983) Studies on the primary production in a Chamaecyparis obtusa plantation. J Jpn For Soc 65:357–365

    Google Scholar 

  • Khan MNI, Suwa R, Hagihara A, Ogawa K (2004) Interception of photosynthetic photon flux density in a mangrove stand of Kandelia candel (L.) Druce. J For Res 9:205–210. doi:10.1007/s10310-003-0074-7

    Article  Google Scholar 

  • Khan MNI, Suwa R, Hagihara A (2005) Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L.) Druce trees in the Manko Wetland, Okinawa Island, Japan. Trees 19:266–272. doi:10.1007/s00468-004-0377-0

    Article  Google Scholar 

  • Khan MNI, Suwa R, Hagihara A (2007) Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil–vegetation system. Wetlands Ecol Manag 15:141–153. doi:10.1007/s11273-006-9020-8

    Article  Google Scholar 

  • Khan MNI, Suwa R, Hagihara A (2009) Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecol Manag 17:585–599. doi:10.1007/s11273-009-9136-8

    Article  Google Scholar 

  • Khan MNI, Sharma S, Berger U, Koedam N, Dahdouh-Guebas F, Hagihara A (2013) How do tree competition and stand dynamics lead to spatial patterns in monospecific mangroves? Biogeosciences 10:2803–2814. doi:10.5194/bg-10-2803-2013

    Article  Google Scholar 

  • Komiyama A, Ogino K, Aksornkoae S, Sabhasri S (1987) Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. J Trop Ecol 3:97–108 doi:10.1017/S0266467400001826

    Google Scholar 

  • Komiyama A et al (2000) Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. For Ecol Manag 139:127–134. doi:10.1016/S0378-1127(99)00339-4

    Article  Google Scholar 

  • Kurachi N, Hagihara A, Hozumi K (1986) Evaluation of the light interception by non-photosynthetic organs in aLarix leptolepis plantation. Ecol Res 1:173–183. doi:10.1007/BF02347019

    Article  Google Scholar 

  • Kurachi N, Hagihara A, Hozumi K (1989) Effect of light interception by non-photosynthetic organs on canopy photosynthetic production. Ecol Res 4:187–197. doi:10.1007/BF02347151

    Article  Google Scholar 

  • Kvålseth TO (1985) Cautionary note about R2. Am Statistic 39:279–285. doi:10.2307/2683704

    Google Scholar 

  • Lacerda LD, Ittekkot V, Patchineelam SR (1995) Biogeochemistry of mangrove soil organic matter: a comparison between Rhizophora and Avicennia soils in South-eastern Brazil. Estuar Coast Shelf Sci 40:713–720. doi:10.1006/ecss.1995.0048

    Article  Google Scholar 

  • Law BE, Cescatti A, Baldocchi DD (2001) Leaf area distribution and radiative transfer in open-canopy forests: implications for mass and energy exchange. Tree Physiology 21:777–787. doi:10.1093/treephys/21.12-13.777

    Article  Google Scholar 

  • Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97:616–628. doi:10.1111/j.1365-2745.2009.01510.x

    Article  Google Scholar 

  • Lee SY (1991) Herbivory as an ecological process in a Kandelia candel (Rhizophoraceae) mangal in Hong Kong. J Trop Ecol 7:337–348 doi:10.1017/S0266467400005605

    Google Scholar 

  • Mackey A (1993) Biomass of the mangrove Avicennia marina (Forsk.) Vierh. Near Brisbane, South-eastern Queensland. Mar Freshw Res 44:721–725. doi:10.1071/MF9930721

    Article  Google Scholar 

  • Marchand C, Baltzer F, Lallier-Vergès E, Albéric P (2004) Pore-water chemistry in mangrove sediments: relationship with species composition and developmental stages (French Guiana). Mar Geol 208:361–381. doi:10.1016/j.margeo.2004.04.015

    Article  Google Scholar 

  • Mfilinge P, Atta N, Tsuchiya M (2002) Nutrient dynamics and leaf litter decomposition in a subtropical mangrove forest at Oura Bay, Okinawa, Japan. Trees 16:172–180. doi:10.1007/s00468-001-0156-0

    Article  Google Scholar 

  • Monsi M, Saeki T (1953) Uber den Lichtfaktor in den Pflanzengesellschaften und Seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52

    Google Scholar 

  • Rahman MM, Khan MNI, Hoque AKF, Ahmed I (2015) Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecol Manage 23:269–283. doi:10.1007/s11273-014-9379-x

    Article  Google Scholar 

  • Ripley BD (1979) Tests of `Randomness’ for spatial point patterns. J R Stat Soc B (Methodological) 41:368–374. doi:10.2307/2985065

    Google Scholar 

  • Robertson AA, Alongi DD (1992) Tropical mangrove ecosystems, Coastal and estuarine studies, vol 41. American Geophysical Union, Washington, DC

    Google Scholar 

  • Ross M, Ruiz P, Telesnicki G, Meeder J (2001) Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (U.S.A.). Wetlands Ecol Manage 9:27–37. doi:10.1023/A:1008411103288

    Article  Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture and conservation.

    Google Scholar 

  • Sherman RE, Fahey TJ, Martinez P (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6:384–398. doi:10.1007/s10021-002-0191-8

    Article  Google Scholar 

  • Sheue C-R, Liu H-Y, Yong JWH (2003) Kandelia obovata (Rhizophoraceae), a new mangrove species from Eastern Asia. Taxon 52:287–294. doi:10.2307/3647398

    Article  Google Scholar 

  • Sterck FJ, Bongers F (2001) Crown development in tropical rain forest trees: patterns with tree height and light availability. J Ecol 89:1–13. doi:10.1046/j.1365-2745.2001.00525.x

    Article  Google Scholar 

  • Stoyan D, Penttinen A (2000) Recent applications of point process methods in forestry statistics. Stat Sci 15:61–78. doi:10.2307/2676677

    Article  Google Scholar 

  • Sukardjo S, Yamada I (1992) Biomass and productivity of a Rhizophora mucronata Lamarck plantation in Tritih, Central Java, Indonesia. For Ecol Manage 49:195–209. doi:10.1016/0378-1127(92)90135-V

    Article  Google Scholar 

  • Suzuki E, Tagawa H (1983) Biomass of a mangrove forest and a sedge marsh on Ishigaki Island, south Japan. Jap J Ecol 33:231–234

    Google Scholar 

  • Tamai S, Nakasuga T, Tabuchi R, Ogino K (1986) Standing biomass of mangrove forest in southern Thailand. J Jpn For Soc 68:384–388

    Google Scholar 

  • Whittaker RH, Woodwell GM (1967) Surface area relations of woody plants and forest communities. Am J Bot 54:931–939. doi:10.2307/2440715

    Article  Google Scholar 

  • Yim Y, Ogawa H, Kira T (1969) Light interception by stems in plant communities. Jpn J Ecol 19:233–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Nabiul Islam Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Khan, M.N.I., Kabir, M.E. (2017). Ecology of Kandelia obovata (S., L.) Yong: A Fast-Growing Mangrove in Okinawa, Japan. In: DasGupta, R., Shaw, R. (eds) Participatory Mangrove Management in a Changing Climate. Disaster Risk Reduction. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56481-2_18

Download citation

Publish with us

Policies and ethics