Skip to main content

Development of PVA Hydrogels with Superior Lubricity for Artificial Cartilage

  • Chapter
  • First Online:
Rheology of Biological Soft Matter

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Physically cross-linked poly(vinyl alcohol) (PVA) gels are versatile biomaterials with their excellent biocompatibility and mechanical strength. Since the late 1970s, the semicrystalline PVA gels prepared by a freeze-thawing method (FT gel) have been extensively studied in characterizing the structural and functional properties for practical applications, such as artificial hydrogel cartilage. Recently, a simple preparation method for a physically cross-linked PVA gel by a cast-drying method (CD gel) was reported. Although the network nanostructures are similar, CD gels are transparent and elastic, while FT gels are opaque and less elastic. The crystallization conditions of these systems have been investigated; the gels become highly swollen and rigid by the selection of optimum preparation conditions. In this chapter, the mechanical properties of FT and CD gels, such as tearing energy, sliding friction, and abrasion loss, are reviewed in connection with the nano- and microstructures of physical PVA gels. The tribological properties of FT and CD gels are compared with that of natural cartilage. Based on experimental results, simple preparation methods to improve the mechanical and lubrication properties of physically cross-linked PVA gels are presented, and the mechanism of superior lubricity in newly developed PVA gels for artificial hydrogel cartilage is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dowson D and Jin ZM. Micro-elastohydrodynamic Lubrication of Synovial Joints. Eng. Med., 1986; 15:65–67.

    Article  Google Scholar 

  2. Murakami, T. JSME International Journal, Series III 1990, 33, 465–474.

    Google Scholar 

  3. Murakami T, Higaki H, Sawae Y, Ohtsuki N, Moriyama S, Nakanishi Y. Proc. Inst. Mech. Eng. Pt. H J. Eng. Med. 1998, 212, 23–35.

    CAS  Google Scholar 

  4. Oka M, Ushio K, Kumar P, Ikeuchi K, Hyon SH, Nakamura T, Fujita H. Proc. IMechE Part H: J. Eng. Med. 2000, 214, 59–68.

    CAS  Google Scholar 

  5. Arakaki K, Kitamura N, Fujiki H, Kurokawa T, Iwamoto M, Ueno M, Kanaya F, Osada Y, Gong JP, Yasuda K. J. Biomed. Mat. Res. Part A 2010, 93, 1160–1168.

    Google Scholar 

  6. Cha W-I, Hyon S-H, Oka M, Ikada Y. Macromol. Symp. 1996, 109, 115–126.

    Google Scholar 

  7. Kobayashi M, Hyon S.H. Materials 2010, 3, 2753–2771.

    Article  CAS  Google Scholar 

  8. Nakashima K, Sawae Y, Murakami T. Tribo. Intern. 2007, 40, 1423–1427.

    Article  CAS  Google Scholar 

  9. Yarimitsu S, Nakashima K, Sawae Y, Murakami T. Tribology Online 2007, 2, 114–119.

    Article  Google Scholar 

  10. Bodugoz-Senturk H, Choi J, Oral E, Kung JH, Macias CE, Braithwaite G, Muratoglu OK. The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing. Biomaterials, 2008; 29: 141–149.

    Article  CAS  Google Scholar 

  11. Bodugoz-Senturk H, Macias CE, Kung JH, Muratoglu OK. Poly(vinyl alcohol)–acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials 2009; 30: 589–596.

    Article  CAS  Google Scholar 

  12. Peppas NA. Turbidimetric studies of aqueous poly(vinyl alcohol) solutions. Makromolekulare Chemie 1975; 176: 3443–3440.

    Article  Google Scholar 

  13. Nambu M. Japanese Patent Kokai 1982; No. 57/130543. Nambu M. Rubber-like poly(vinyl alcohol) gel. Kobunshi Ronbunshu 1990; 47: 695–703 (in Japanese).

    Google Scholar 

  14. Murakami T, Sawae Y, Higaki H, Ohtsuki N, Moriyamaa S. The Adaptive Multimode Lubrication in Knee Prostheses with Artificial Cartilage during Walking. In: Dowson D et al. (eds) Elastohydrodynamics ‘96: Fundamentals and applications in lubrication and traction. Elsevier Science 1997, 383–394.

    Google Scholar 

  15. Otsuka E and Suzuki A. A Simple Method to Obtain a Swollen PVA Gel Crosslinked by Hydrogen Bonds. J. Appl. Polym. Sci. 2009, 114, 10–16.

    Article  CAS  Google Scholar 

  16. Otsuka E and Suzuki A. Swelling properties of physically cross-linked PVA gels prepared by a castdrying method. Prog. Colloid Polym. Sci. 2009, 136, 121–126.

    CAS  Google Scholar 

  17. Otsuka E, Sasaki S, Koizumi K, Hirashima Y, Suzuki A. Elution of polymers from physically cross-linked poly(vinyl alcohol) gels. Soft Matter 2010; 6: 6155–6159.

    Article  CAS  Google Scholar 

  18. Sasaki S and Suzuki A. Effects of repeated water exchange and the molecular-weight distribution of PVA cast gels on the elution of polymers. React Func Polym 2013; 73: 878–884.

    Article  CAS  Google Scholar 

  19. Suzuki A, Sasaki S, Sasaki S, Noh T, Nakashima K, Yarimitsu S, Murakami, T. Elution and Wear of PVA Hydrogels by Reciprocating Friction. Extended Abstract for World Tribology Congress 2013, 2013; Torino, in USB.

    Google Scholar 

  20. Murakami T, Sakai N, Yamaguchi T, Yarimitsua S, Nakashima K, Sawae Y, Suzuki A. Evaluation of a superior lubrication mechanism with biphasic hydrogels for artificial cartilage. Tribology International 2015; 89: 19–26.

    Article  CAS  Google Scholar 

  21. Sasaki S, Otsuka E, Hirashima Y, and Suzuki A. Elution of Polymers from PVA Cast Gels with Different Degrees of Polymerization and Hydrolysis. J. Appl. Polym. Sci. 2012, 126, E233–E241.

    Article  CAS  Google Scholar 

  22. Hassan CM and Peppas NA. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 2000; 153: 37–65.

    Article  CAS  Google Scholar 

  23. Stauffer SR and Peppas NA. Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing, Polymer, 33 (1992) 3932–3936.

    Article  CAS  Google Scholar 

  24. Peppas NA and Stauffer SR. Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review, J. Controlled Release, 16 (1991) 305–310.

    Article  CAS  Google Scholar 

  25. Lozinsky VI. A Brief History of Polymeric Cryogels. Adv Polym Sci 2014; 263: 1–48.

    Article  CAS  Google Scholar 

  26. Otsuka E, Komiya S, Sasaki S, Xing J, Bando Y, Hirashima Y, Sugiyama M, Suzuki A. Soft Matter 2012, 8, 8129–8136.

    Article  CAS  Google Scholar 

  27. Sasaki S and Suzuki A. Suzuki, Change in molecular weight distribution by elution of polymers from PVA cast gel. Polym. Bull. 2014, 71, 2383–2394.

    Article  CAS  Google Scholar 

  28. Sasaki S and Suzuki A. Polym. Adv. Tech. 2016, 27, 318–324.

    Google Scholar 

  29. Noh T, Bando Y, Ota K, Sasaki S, Suzuki A. Tear force of physically crosslinked poly(vinyl alcohol) gels with different submicrometer-scale network structures. J Appl Polym Sci 2015; 136: 121–126.

    Google Scholar 

  30. Suzuki A and Yoshikawa M. Water flow in poly(N-isopropylacrylamide) gels. J. Chem. Phys. 2006; 125: 174901.

    Article  Google Scholar 

  31. Suzuki A. Phase transition in gels of sub-millimeter size induced by interaction with stimuli. Adv Polym Sci, 1993; 110: 199–240.

    Article  CAS  Google Scholar 

  32. Sasaki S and Suzuki A. Effects of repeated water exchange and the molecular-weight distribution of PVA cast gels on the elution of polymers. React Func Polym 2013; 73: 878–884.

    Article  CAS  Google Scholar 

  33. Otsuka, E, Sugiyama, M, Suzuki, A. Network Microstructure of PVA Cast Gels Observed by SAXS Measurements. J. Phys.: Conf. Ser. 2010, 247, 012043.

    Google Scholar 

  34. Costa, H. S., Rocha, M. F., Andrade, G. I., Barbosa-Stancioli, E. F., Pereira, M. M., Orefice, R. L., Vasconcelos, W. L. and Mansur, H. S. Sol–gel derived composite from bioactive glass–polyvinyl alcohol. J. Mater. Sci. 2008;43, 494–502 (2008).

    Google Scholar 

  35. Peppas NA and Merrill EW. Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 1977; 21: 1763–1770.

    Article  CAS  Google Scholar 

  36. Suzuki A and Sasaki S. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels. Proc IMechE Part H: Journal of Engineering in Medicine, 2015, 229, 828–844

    Google Scholar 

  37. Murakami T, Yarimitsu S, Nakashima K, Sawae Y, Sakai N, Araki T, Suzuki A. Time-dependent frictional behaviors in hydrogel artificial cartilage materials. Proc. 6th International Biotribology Forum, 2011, 65–68.

    Google Scholar 

  38. Murakami T, Importance of adaptive multimode lubrication mechanism in natural and artificial joints, Proc IMechE, J. Eng. Tribol., 2012; 226, 2012, 827–837.

    Google Scholar 

  39. Murakami T, Yarimitsu S, Nakashima K, Yamaguchi T, Sawae Y, Sakai N, Suzuki A. Superior Lubricity in Articular Cartilage and Artificial Hydrogel Cartilage. Proc IMechE Part J: J Engineering Tribology, 2014; 228, 1099–1111.

    Article  CAS  Google Scholar 

  40. Yamaguchi T, Murakami T. Surface friction and bulk transport properties in hydrogels. Preprint JAST Conference (in Japanese) 2013-9; 199–200.

    Google Scholar 

  41. Sakai N, Hagihara Y, Furusawa T, Hosoda N, Sawae Y, Murakami T. Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter. Tribol Int 2012; 45: 225–36.

    Article  Google Scholar 

  42. Murakami T, Yarimitsu S, Nakashima K, Sakai N,Yamaguchi T, Sawae Y, Suzuki A. Synergistic Lubricating Function with Different Modes for Artificial Hydrogel Cartilage, Proc. The 8th International Biotribology Forum and The 36th Biotribology Symposium, 2015, 1–2.

    Google Scholar 

Download references

Acknowledgement

The author would like to thank Kuraray Co., Ltd. for supplying PVA powders. This work was supported by the Grant-in-Aid for Specially Promoted Research of Japan Society for the Promotion of Science (Kaken: 23000011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Suzuki, A., Sasaki, S., Murakami, T. (2017). Development of PVA Hydrogels with Superior Lubricity for Artificial Cartilage. In: Kaneda, I. (eds) Rheology of Biological Soft Matter. Soft and Biological Matter. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56080-7_13

Download citation

Publish with us

Policies and ethics