Skip to main content

Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan

  • Chapter
  • First Online:
“Hot Spots” in the Climate System
  • 582 Accesses

Abstract

In 2013, sea-level pressure within Typhoon Man-yi dropped by more than 15 hPa in 6 h. The storm underwent extremely rapid intensification just north of 30°N near the coast of Japan. This study evaluated the importance of preexisting oceanic conditions around the Kuroshio Current for the rapid intensification, by performing a set of sensitivity experiments using an atmosphere-wave-ocean–coupled model. The results of both the sensitivity experiments and various observations suggest that warm water conditions in the ocean played a decisive role in the intensification and steepening of the sea-level pressure gradient within the storm area, whereas storm-induced sea surface cooling was important in suppressing excessive intensification during the early intensification phase of Man-yi. The rapid intensification was caused by excitement of a mesovortex inside the radius of the maximum surface wind. This unusual excitement was related to barotropic-convective instability induced by relatively high sea surface temperature and steep horizontal gradients in both sea-level pressure and tangential wind on the downshear side of the environmental vertical windshear vector. The local Rossby penetration depth around the mesovortex increased because of reduced static stability, increased relative vorticity, and an increase of the Coriolis parameter on the downshear side of the environmental vertical windshear vector where warm water in the ocean was transported along the Kuroshio Current. Preexisting high sea surface temperature conditions and storm-induced sea surface cooling also affected the extraordinarily heavy rainfall, particularly in the northern Kinki districts, which was simulated reasonably well in the numerical experiments.

This chapter is re-publication of the article (DOI:10.1007/s10872-015-0273-9) from the journal “Journal of Oceanography”

Received: 7 July 2014 / Revised: 14 January 2015 / Accepted: 20 January 2015 / Published online: 5 February 2015

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tropical cyclones that develop in the western part of the North Pacific Ocean between 180°E and 100°E are generally referred to as typhoons. Typhoons are usually defined by maximum 10-min sustained surface winds higher than approximately 33 ms–1; tropical cyclones with maximum sustained winds of approximately 17–33 ms–1 are generally referred to as tropical storms. However, in the following discussion, we refer to tropical cyclones with maximum wind speeds exceeding approximately 17 ms−1 (called taifu in Japanese) as typhoons.

  2. 2.

    The Kinki districts include the prefectures of Mie, Nara, Wakayama, Kyoto, Osaka, Hyōgo, and Shiga (Fig. 1). This study includes the prefecture of Fukui in the northern Kinki districts as well as those of Kyoto and Shiga.

References

  • Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comp Mach 17:589–602

    Article  Google Scholar 

  • Arakane S, Satoh M, Yanase W (2014) Excitation of deep convection to the north of tropical storm Bebinca (2006). J Meteor Soc Japan 92:141–161. doi:10.2151/jmsj.2014-201

    Article  Google Scholar 

  • Bao JW, Wilczak JM, Choi JK, Kantha LH (2000) Numerical simulations of air–sea interaction under high wind conditions using a coupled model: a study of hurricane development. Mon Weather Rev 128:2190–2210. doi:10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2

    Article  Google Scholar 

  • Bender MA, Ginis I, Kurihara Y (1993) Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J Geophys Res 98:23245–23263

    Article  Google Scholar 

  • Black ML, Gamache JF, Marks FD Jr, Samsury CE, Willoughby HE (2002) Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: the effect of vertical shear on structure and intensity. Mon Weather Rev 130:2291–2312

    Article  Google Scholar 

  • Cazenave A, Remy F (2011) Sea level and climate: measurements and causes of changes. WIREs Clim Change 2:647–662

    Article  Google Scholar 

  • Cecil DJ, Zipser EJ (1999) Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon Weather Rev 127:103–123

    Article  Google Scholar 

  • Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary Layer Meteorol 18:495–527. doi:10.1007/BF00119502

    Article  Google Scholar 

  • Deardorff JW (1983) A multi-limit mixed-layer entrainment formulation. J Phys Oceanogr 13:988–1002. doi:10.1175/1520-0485(1983)013<0988:AMLMLE>2.0.CO;2

    Article  Google Scholar 

  • Dvorak VF (1975) Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon Weather Rev 103(5):420–430

    Article  Google Scholar 

  • Hawkins JD, Turk FJ, Lee TF, Richardson K (2008) Observations of tropical cyclones with the SSMIS, Geoscience and Remote Sensing. IEEE Transactions 46:901–912. doi:10.1109/TGRS.2008.915753

    Google Scholar 

  • Hence DA, Houze RA Jr (2011) Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J Atmos Sci 68:1637–1652

    Article  Google Scholar 

  • Ito K, Ishikawa Y, Miyamoto Y, Awaji T (2011) Short-time-scale processes in a mature hurricane as a response to sea surface fluctuations. J Atmos Sci 68:2250–2272

    Article  Google Scholar 

  • Jones SC (1995) The evolution of vortices in vertical shear. I: initially barotropic vortices. Q J R Meteorol Soc 121:821–851

    Article  Google Scholar 

  • Kanada S, Wada A, Sugi M (2013) Future changes in structures of extremely intense tropical cyclones using a 2-km Mesh Nonhydrostatic Model. J Clim 26:9986–10005

    Article  Google Scholar 

  • Kaplan J, DeMaria M, Knaff JA (2010) A revised tropical cyclone rapid intensification index for the Atlantic and Eastern North Pacific Basins. Weather Forecast 25:220–241

    Article  Google Scholar 

  • Kawai Y, Wada A (2007) Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: a review. J Oceanogr 63:721–744. doi:10.1007/s10872-007-0063-0

    Article  Google Scholar 

  • Kawai Y, Miyama T, Iizuka S, Manda A, Yoshioka MK, Katagiri S, Tachibana Y, Nakamura H (2015) Marine atmospheric boundary layer and low-level cloud responses to the Kuroshio Extension front in the early summer of 2012: three-vessel simultaneous observations and numerical simulations. J Oceanogr. doi:10.1007/s10872-014-0266-0 (In press)

    Google Scholar 

  • Kelly KA, Small RJ, Samelson RM, Qiu B, Joyce TM, Kwon Y-O, Cronin M (2010) Western boundary currents and frontal air–sea interaction: gulf Stream and Kuroshio Extension. J Clim 23:5644–5667. doi:10.1175/2010JCLI3346.1

    Article  Google Scholar 

  • Klemp JB, Wilhelmson R (1978) The simulation of three-dimensional convective storm dynamics. J Atmos Sci 35:1070–1096. doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2

    Article  Google Scholar 

  • Koba H, Hagiwara T, Osano S, Akashi S (1990) Relationship between the CI-number and central pressure and maximum wind speed in typhoons. J Meteor Res 42:59–67 (in Japanese)

    Google Scholar 

  • Kondo J (1975) Air-sea bulk transfer coefficients in diabatic conditions. Boundary Layer Meteorol 9:91–112. doi:10.1007/BF00232256

    Article  Google Scholar 

  • Kossin JP, Schubert WH (2001) Mesovortices, polygonal flow patterns and rapid pressure falls in hurricane-like vortices. J Atmos Sci 58:1079–1090

    Article  Google Scholar 

  • Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–352. doi:10.1038/nature13278

    Article  Google Scholar 

  • Kwon Y-O, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson L (2010) Role of the Gulf 487 Stream and Kuroshio-Oyashio system in large-scale atmosphere-ocean interaction: a review. J Clim 23:3249–3281. doi:10.1175/2010JCLI3343.1

    Article  Google Scholar 

  • Leipper DF, Volgenau D (1972) Hurricane heat potential of the Gulf of Mexico. J Phys Oceanogr 2:218–224

    Article  Google Scholar 

  • Lin YH, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1092. doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2

    Article  Google Scholar 

  • Lin I-I, Wu C-C, Emanuel KA, Lee I-H, Wu C-R, Pan I-F (2005) The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon Weather Rev 133:2635–2649. doi:10.1175/MWR3005.1

    Article  Google Scholar 

  • Lin I-I, Wu C-C, Pun I-F, Ko D-S (2008) Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons’ intensification. Mon Weather Rev 136:3288–3306. doi:10.1175/2008MWR2277.1

    Article  Google Scholar 

  • Lin I-I, Black P, Price JF, Yang C-Y, Chen SS, Lien C-C, Harr P, Chi N-H, Wu C-C, D’Asaro EA (2013) An ocean coupling potential intensity index for tropical cyclones. Geophys Res Lett 40:1878–1882. doi:10.1002/grl.50091

    Article  Google Scholar 

  • Lloyd ID, Vecchi GA (2011) Observational evidence for oceanic controls on hurricane intensity. J Clim 24(4):1138–1153

    Article  Google Scholar 

  • Makihara Y (1996) A method for improving radar estimates of precipitation by comparing data from radars and rain gauges. J Meteor Soc Japan 74:459480

    Google Scholar 

  • Mei W, Primeau F, McWilliams JC, Pasquero C (2013) Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean. Proc Natl Acad Sci USA 38:15207–15210

    Article  Google Scholar 

  • Montgomery MT, Kallenbach RJ (1997) A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Q J R Meteorol Soc 123:435–465

    Article  Google Scholar 

  • Montgomery MT, Smith RK, Bguyen SV (2010) Sensitivity of tropical-cyclone models to the surface drag coefficient. Q J R Meteorol Soc 136:1945–1953

    Article  Google Scholar 

  • Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260

    Article  Google Scholar 

  • Nguyen MC, Reeder MJ, Davidson NE, Smith RK, Montgomery MT (2011) Inner-core vacillation cycles during the intensification of Hurricane Katrina. Q J R Meteorol Soc 137:829–844. doi:10.1002/qj.823

    Article  Google Scholar 

  • Nolan DS, Zhang JA, Stern DP (2009) Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of hurricane Isabel (2003). Part I: initialization, maximum winds, and the outer-core boundary layer. Mon Weather Rev 137:3651–3674

    Article  Google Scholar 

  • Palmén EH (1948) On the formation and structure of tropical cyclones. Geophysica 3:26–38

    Google Scholar 

  • Pun I-F, Lin I-I, Lo M-H (2013) Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys Res Lett 40:4680–4684. doi:10.1002/grl.50548

    Article  Google Scholar 

  • Qiu B, Chen S (2012) Multi-decadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J Phys Oceanogr 42:193–206. doi:10.1175/JPO-D-11-061.1

    Article  Google Scholar 

  • Reasor PD, Eastin MD (2012) Rapidly intensifying hurricane Guillermo (1997). Part II: resilience in shear. Mon Weather Rev 140:425–444

    Article  Google Scholar 

  • Reasor PD, Rogers R, Lorsolo S (2013) Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon Weather Rev 141:2949–2969

    Article  Google Scholar 

  • Rogers R, Reasor P, Lorsolo S (2013) Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon Weather Rev 141:2970–2991

    Article  Google Scholar 

  • Saito K (2012) The JMA Nonhydrostatic model and its applications to operation and research. In: Yucel I (ed) Atmospheric Model Applications. InTech, Croatia, pp 85–110. doi:10.5772/35368

    Google Scholar 

  • Schubert WH, Montgomery MT, Taft RK, Guinn TA, Fulton SR, Kossin JP, Edwards JP (1999) Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J Atmos Sci 56:1197–1223. doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2

    Article  Google Scholar 

  • Shay LK (2010) Air-sea interactions in tropical cyclones. In: Chan JCL, Kepert JD (eds) Global perspective on tropical cyclones from science to mitigation. World Scientific, Singapore, pp 93–132

    Chapter  Google Scholar 

  • Shay LK, Goni GJ, Black PG (2000) Role of a warm ocean feature on Hurricane Opal. Mon Weather Rev 128:1366–1383

    Article  Google Scholar 

  • Small RJ, deSzoeke SP, Xie SP, O’Neil L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319

    Article  Google Scholar 

  • Smith RK, Thomsen GL (2010) Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Q J R Meteorol Soc 136A:1671–1685

    Article  Google Scholar 

  • Spencer RW, Goodman HM, Hood RE (1989) Precipitation retrieval over land and ocean with the SSM/I: identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol. 6:254–273

    Article  Google Scholar 

  • Sugi M, Kuma K, Tada K, Tamiya K, Hasegawa N, Iwasaki T, Yamada S, Kitade T (1990) Description and performance of the JMA operational global spectral model (JMA-GSM88). Geophys Mag 43:105–130

    Google Scholar 

  • Taylor PK, Yelland MJ (2001) The dependence of sea surface roughness on the height and steepness of the waves. J Phys Oceanogr 31:572–590. doi:10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2

    Article  Google Scholar 

  • Thomsen GL, Montgomery MT, Smith RK (2014) Sensitivity of tropical-cyclone intensification to perturbation in the surface drag coefficient. Q J R Meteorol Soc 140:407–415

    Article  Google Scholar 

  • Usui N, Ishizaki S, Fujii Y, Tsujino H, Yasuda T, Kamachi M (2006) Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Adv Space Res 37:806–822. doi:10.1016/j.asr.2005.09.022

    Article  Google Scholar 

  • Wada A (2002) The processes of SST cooling by typhoon passage and case study of Typhoon Rex with a mixed layer ocean model. Pap Met Geophys 52:31–66. doi:10.2467/mripapers.52.31

    Article  Google Scholar 

  • Wada A (2009) Idealized numerical experiments associated with the intensity and rapid intensification of stationary tropical-cyclone-like vortex and its relation to initial sea-surface temperature and vortex-induced sea-surface cooling. J Geophys Res 114:D18111. doi:10.1029/2009JD011993

    Article  Google Scholar 

  • Wada A (2012) Rapid intensification of Typhoon Roke in 2011. CAS/JSC WGNE Res Activities Atm Ocean Model 42:9.03–9.04

    Google Scholar 

  • Wada A (2013) Sensitivity of horizontal resolution and sea spray to the simulations of Typhoon Roke in 2011. CAS/JSC WGNE Res Activities Atm Ocean Model 43:7–9

    Google Scholar 

  • Wada A, Chan JCL (2008) Relationship between typhoon activity and upper ocean heat content. Geophys Res Lett 35:L17603. doi:10.1029/2008GL035129

    Article  Google Scholar 

  • Wada A, Niino H, Nakano H (2009) Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998). J Oceanogr 65:373–396. doi:10.1007/s10872-009-0034-8

    Article  Google Scholar 

  • Wada A, Kohno N, Kawai Y (2010) Impact of wave-ocean interaction on Typhoon Hai-Tang in 2005. SOLA 6A:13–16. doi:10.2151/sola.6A-004

    Article  Google Scholar 

  • Wada A, Cronin MF, Sutton AJ, Kawai Y, Ishii M (2013) Numerical simulations of oceanic pCO2 variations and interactions between Typhoon Choi-wan (0914) and the ocean. J Geophys Res Ocean 118:2667–2684

    Article  Google Scholar 

  • Wang B, Zhou X (2008) Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteorol Atmos Phys 99:1–16. doi:10.1007/s00703-006-0238-z

    Article  Google Scholar 

  • Yablonsky R, Ginis I (2009) Limitation of one-dimensional ocean models for coupled hurricane-ocean model forecasts. Mon Weather Rev 137(12):4410–4419

    Article  Google Scholar 

  • Zhang JA, Katsaros KB, Black PG, Lehner S, French JR, Drennan WM (2008) Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Boundary Layer Meteorol 128:173–189

    Article  Google Scholar 

  • Zhu P (2008) Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J Geophys Res Atmos 113:D17104. doi:10.1029/2007JD009643

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Mr. S. Ishizaki for providing operational oceanic data. The author wishes to thank Mr. R. Oyama, Dr. S. Kanada, Mr. U. Shimada and Dr. N. Usui for fruitful discussions and two reviewers for providing useful comments to improve the manuscript. This work was funded by KAKENHI Grant Number 25106708 from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Wada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Oceanographic Society of Japan and Springer Japan

About this chapter

Cite this chapter

Wada, A. (2016). Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan. In: Nakamura, H., Isobe, A., Minobe, S., Mitsudera, H., Nonaka, M., Suga, T. (eds) “Hot Spots” in the Climate System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56053-1_8

Download citation

Publish with us

Policies and ethics