Skip to main content

Understanding Force Perception Characteristics of a Human and Its Applications

  • Chapter
  • First Online:
Pervasive Haptics
  • 1085 Accesses

Abstract

Many assistive devices designed to reduce fatigue on muscles during work are in development. Building models of human sensory and motor functions is helpful when creating devices to effectively and safely assist us in daily life. There is a sense of force associated with voluntary muscular exertion, which contributes to the perception of weight. Researchers in the field of perceptual psychology have investigated human perception characteristics of force over the years. These models of perception characteristics of force are helpful to evaluate subjective efforts associated with intuitive, safe, and easy-to-use products. In this chapter, two research studies are addressed in detail. The first study aims to model the perception characteristics of force, and explore its application in developing a perception prediction method during steering. This study estimates the muscle activity when using a steering wheel based on a three-dimensional musculoskeletal model, develops a perception conversion model that follows the Weber-Fechner law, and describes the experimental results that confirm the feasibility of the proposed force perception prediction. The second study aims to explore the challenges in developing wearable assistive technology that can enhance humans’ force perception capability by unloading voluntary muscle activation. This study measures the force perception capability of participants with different postures to investigate how differences in voluntary muscle activation affect force perception capability. Based on the experiments, a muscle-assistive wearable device that unloads the upper limb is developed, and the improvement in sensorimotor capability when voluntary muscle activation is reduced while wearing the device is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suzuki, K., Mito, G., Kawamoto, H., Hasegawa, Y., Sankai, Y.: Intention-based walking support for paraplegia patients with robot suit HAL. Adv. Robot. 21(12), 1441–1469 (2007)

    Google Scholar 

  2. Tanaka, T., Satoh, Y., Kaneko, S., Suzuki, Y.: Smart suit: soft power suit with semi-active assist mechanism -prototype for supporting waist and knee joint-. In: International Conference on Control, Automation and Systems, Seoul (2008). doi:10.1109/ICCAS.2008.4694428

    Google Scholar 

  3. Yeh, T.I., Wu, M.J., Lu, T.J., Wu, F.K., Huang, C.R.: Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics 20(6), 686–697 (2010)

    Article  Google Scholar 

  4. Muramatsu, Y., Kobayashi, H., Sato, Y., Jiaou, H., Hashimoto, T., Kobayashi, H.: Quantitative performance analysis of exoskeleton augmenting devices -muscle suit- for manual worker. Int. J. Autom. Technol. 5(4), 559–567 (2011)

    Article  Google Scholar 

  5. Gordon, K.E., Kinnaird, C.R., Ferris, D.P.: Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton. J. Neurophysiol. 109(7), 1804–1814 (2013)

    Article  Google Scholar 

  6. Imamura, Y., Tanaka, T., Suzuki, Y., Takizawa, K., Yamanaka, M.: Motion-based-design of elastic material for passive assistive device using musculoskeletal model. J. Robot. Mechatron. 23(6), 978–990 (2011)

    Article  Google Scholar 

  7. Takahashi, K., Tanaka, T., Nara, H., Kaneko, S., Yoshida, E.: A model of burden sense from psychophysical factors in lifting action with and without power assist device. In: International Conference on Advanced Cognitive Technologies and Applications, Valencia, pp. 27–33 (2013)

    Google Scholar 

  8. Kong, Y.K., Freivalds, A.: Evaluation of meat-hook handle shapes. Int. J. Ind. Ergon. 32(2), 13–23 (2003)

    Article  Google Scholar 

  9. Kong, Y.K., Freivalds, A.: Evaluation of hook handles in a pulling task. Int. J. Occup. Saf. Ergon. 11(3), 303–313 (2005)

    Article  Google Scholar 

  10. Kong, Y.K., Lowe, B.D., Lee, S.J., Krieg, E.F.: Evaluation of handle design characteristics in a maximum screwdriving torque task. Ergonomics 50(9), 1404–1418 (2007)

    Article  Google Scholar 

  11. Iwamoto, Y., Umetsu, D., Ozaki, S.: Evaluation of driver-vehicle matching using neck muscle activity and vehicle dynamics. Kansei Eng. Int. J. 11(3), 147–154 (2012)

    Article  Google Scholar 

  12. An, K.N., Chao, E.Y., Cooney, W.P., Linscheid, R.L.: Normative model of human hand for biomechanical analysis. J. Biomech. 12(10), 775–788 (1979)

    Article  Google Scholar 

  13. Holzbaur, K.R.S., Murray, W.M., Delp, S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33(6), 829–840 (2005)

    Article  Google Scholar 

  14. Valero-Cuevas, F.J.: An integrative approach to the biomechanical function and neuromuscular control of the fingers. J. Biomech. 38(4), 673–684 (2005)

    Article  Google Scholar 

  15. Flanagan, J.R., Bowman, M.C., Johansson, R.S.: Control strategies in object manipulation tasks. Curr. Opin. Neurobiol. 16(6), 650–659 (2006)

    Article  Google Scholar 

  16. Sueda, S., Kaufman, A., Pai, D.K.: Musculotendon simulation for hand animation. ACM Trans. Graphics (Proceedings SIGGRAPH) 27(3), 775–788 (2008)

    Google Scholar 

  17. Nakamura, Y., Yamane, K., Fujita, Y., Suzuki, I.: Somatosensory computation for man-machine interface from motion capture data and musculoskeletal human model. IEEE Trans. Robot. 21(1), 58–66 (2005)

    Article  Google Scholar 

  18. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  19. Endo, Y., Kanai, S., Kishinami, T., Miyata, N., Kouchi, M., Mochimaru, M.: Virtual grasping assessment using 3D digital hand model. In: Proceedings of 10th Annual Applied Ergonomics Conference, Texas (2007)

    Google Scholar 

  20. Tada, M., Pai, D.K.: Finger shell: predicting finger pad deformation under line loading. In: Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Reno, pp. 107–112 (2008)

    Google Scholar 

  21. Sugiyama, S., Koeda, M., Fujimoto, H., Yoshikawa, T.: Measurement of grasp position by human hands and grasp criterion for two soft-fingered robot hands. In: IEEE International Conference on Robotics and Automation, Kobe, pp. 1127–1132 (2009)

    Google Scholar 

  22. Murai, A., Kurosaki, K., Yamane, K., Nakamura, Y.: Musculoskeletal-see-through mirror: computational modeling and algorithm for whole-body muscle activity visualization in real time. Prog. Biophys. Mol. Biol. 103, 310–317 (2010)

    Article  Google Scholar 

  23. Ikeda, A., Kurita, Y., Ogasawara, T.: Product usability estimation using musculoskeletal model. In: IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, pp. 307–312 (2010)

    Google Scholar 

  24. Kurita, Y., Ikeda, A., Matsumoto, T., Ogasawara, T.: Evaluation of grasp efficiency based on muscle activity estimation by anthropomorphic robot fingers. In: International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, pp. 466–468 (2011)

    Google Scholar 

  25. Gandevia, S.C., McClosky, D.I.: Sensations of heaviness. Brain 100(2), 345–354 (1977)

    Article  Google Scholar 

  26. Jones, L.A.: Role of central and peripheral signals in force sensation during fatigue. Exp. Neurol. 81(2), 497–503 (1983)

    Article  Google Scholar 

  27. Jones, L.A.: Perception of force and weight: theory and research. Psycholog. Bull. 100(1), 29–42 (1986)

    Article  Google Scholar 

  28. Brockett, C., Warren, N., Gregory, J.E., Morgan, D.L., Proske, U.: A comparison of the effects of concentric versus eccentric exercise on force and position sense at the human elbow joint. Brain Res. 771(2), 251–258 (1997)

    Article  Google Scholar 

  29. Vuillerme, N., Boisgontier, M.: Muscle fatigue degrades force sense at the ankle joint. Gait Posture 28(3), 521–524 (2008)

    Article  Google Scholar 

  30. van Beek, F.E., Tiest, W.M.B., Kappers, A.M.L.: Anisotropy in the haptic perception of force direction and magnitude. IEEE Trans. Haptics 6(4), 399–407 (2013)

    Article  Google Scholar 

  31. Takemura, K., Yamada, N., Kishi, A., Nishikawa, K., Nouzawa, T., Kurita, Y., Tsuji, T.: A subjective force perception model of humans and its application to a steering operation system of a vehicle. In: IEEE International Conference on Systems, Man, and Cybernetics, Manchester, pp. 3675–3680 (2013)

    Google Scholar 

  32. Fechner, G.T.: Elements of Psychophysics. Handbook of Physiology Section 12 Exercise: Regulation and Integration of Multiple Systems. Holt, Rinehart and Winston, New York (1966)

    Google Scholar 

  33. Sato, J., Takemura, K., Yamada, N., Kishi, A., Nishikawa, K., Nouzawa, T., Tsuji, T., Kurita, Y.: Investigation of subjective force perception based on estimation of muscle activities during steering operation. In: IEEE/SICE International Symposium on System Integration, Kobe, pp. 76–81 (2013)

    Google Scholar 

  34. Kurita, Y., Sato, J., Tanaka, T., Shinohara, M., Tsuji, T.: Unloading muscle activation enhances force perception. Augmented Human (2014). doi:10.1145/2582051.2582055

    Google Scholar 

  35. Thelen, D.G.: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 25, 70–77 (2003)

    Article  Google Scholar 

  36. Menegolo, A.: Simtk.org: upper and lower body model: overview (2011). https://simtk.org/home/ulb_project

  37. Ae, M., Tang, H.P., Yokoi, T.: Estimation of inertia properties of the body segments in Japanese athletes. Biomechanism 11, 23–33 (1992)

    Google Scholar 

  38. Henneman, E.: Relation between size of neurons and their susceptibility to discharge. Science 126(3287), 1345–1347 (1957)

    Article  Google Scholar 

  39. Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394(6695), 780–784 (1998)

    Article  Google Scholar 

  40. Jones, K.E., Hamilton, A.F., Wolpert, D.M.: Sources of signal-dependent noise during isometric force production. J. Neurophysiol. 88, 1533–1544 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Kurita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kurita, Y. (2016). Understanding Force Perception Characteristics of a Human and Its Applications. In: Kajimoto, H., Saga, S., Konyo, M. (eds) Pervasive Haptics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55772-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55772-2_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55771-5

  • Online ISBN: 978-4-431-55772-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics