Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

  • 4974 Accesses

Abstract

Combinatorial optimization problems are ubiquitous in our modern life. The classic examples include the protein folding in biology and medicine, the frequency assignment in wireless communications, traffic control and routing in air and on surface, microprocessor circuit design, computer vision and graph cut in machine learning, and social network control. They often belong to NP, NP-complete and NP-hard classes, for which modern digital computers and future quantum computers cannot find solutions efficiently, i.e. in polynomial time [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman, New York, 1979)

    MATH  Google Scholar 

  2. K. Binder, A.P. Young, Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986)

    Article  ADS  Google Scholar 

  3. E. Ising, Beitrag zur theorie des ferromagnetismus. Z. Phys. 31, 253 (1925)

    Article  ADS  Google Scholar 

  4. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944)

    MATH  MathSciNet  Google Scholar 

  5. F. Barahona, On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15, 3241–3253 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Nielson, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge/New York, 2000)

    Google Scholar 

  7. T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998)

    Article  ADS  Google Scholar 

  8. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. S. Utsunomiya, K. Takata, Y. Yamamoto, Mapping of Ising models onto injection-locked laser systems. Opt. Express 19, 18091–18108 (2011)

    Article  ADS  Google Scholar 

  10. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia (1996), p. 212

    Google Scholar 

  11. C.H. Bennett, E. Bernstein, G. Brassard, U.V. Vazirani, Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Roland, N. Cerf, Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)

    Article  ADS  Google Scholar 

  13. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation. quant-ph/0405098 v2 (2005)

    Google Scholar 

  14. D. Gattesman, The Heisenberg representation of quantum computers. quant-ph/9807006 (1998)

    Google Scholar 

  15. S.D. Bartlett, B.C. Sanders, S.L. Braunstein, K. Nemoto, Efficient classical simulation of continuous variable quantum information processes. quant-ph/0109047 (2001)

    Google Scholar 

  16. L. Gillner, G. Bjork, Y. Yamamoto, Quantum noise properties of an injection-locked laser oscillator with pump-noise suppression and squeezed injection. Phys. Rev. A 41(9), 5053–5065 (1990)

    Article  ADS  Google Scholar 

  17. H.A. Haus, Y. Yamamoto, Quantum noise of an injection-locked laser oscillator. Phys. Rev. A 29, 1261–1274 (1984)

    Article  ADS  Google Scholar 

  18. M. Surgent, M.O. Scully, W.E. Lamb, Chapter 20, in Laser Physics (Westview Printing, Colorado, 1978), pp. 331–335

    Google Scholar 

  19. H. Haug, Quantum-mechanical rate equations for semiconductor lasers. Phys. Rev. 184, 338–348 (1969)

    Article  ADS  Google Scholar 

  20. Y. Yamamoto, S. Machida, O. Neilsson, Amplitude squeezing in a pump-noise-suppressed laser oscillator. Phys. Rev. A 34, 4025–4042 (1986)

    Article  ADS  Google Scholar 

  21. M. Yannakakis, Edge-deletion problems. SIAM J. Comput. 10, 297–309 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Greenlaw, R. Pedreschi, Cubic graphs. ACM Comput. Surv. 27, 471–495 (1995)

    Article  Google Scholar 

  23. F. Barahona, M. Grotschel, M. Junger, R. Reinelt, An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)

    Article  MATH  Google Scholar 

  24. A. Galluccio, M. Loebl, J. Vondrak, New algorithm for the Ising problem: partition function for finite lattice graphs. Phys. Rev. Lett. 84, 5924–5927 (2000)

    Article  ADS  Google Scholar 

  25. C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  26. K. Takata, S. Utsunomiya, Y. Yamamoto, Transient time of an Ising machine based on injection-locked laser network. New J. Phys. 14, 013052 (2012)

    Article  ADS  Google Scholar 

  27. B.D. McKay, G.F. Royle, Constructing the cubic graphs on up to 20 vertices. Ars Combin. 21, 129–140 (1986)

    MathSciNet  Google Scholar 

  28. M.X. Goemans, D.P. Williams, J. ACM 42, 1115 (1995)

    Article  MATH  Google Scholar 

  29. S. Saito, O. Nilsson, Y. Yamamoto, Oscillation center frequency tuning, quantum FM noise, and direct frequency characteristics in external grating loaded semiconductor lasers. IEEE J. Quant. Electron. 18, 6 (1982)

    Article  Google Scholar 

  30. H. Nishimori, G. Ortiz, Elements of Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 2011)

    MATH  Google Scholar 

  31. J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  32. A. Gordon, B. Fischer, Phys. Rev. Lett. 89, 103901 (2002)

    Article  ADS  Google Scholar 

  33. H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  34. M. Nixon, E. Ronen, A.A. Friedman, N. Davidson, Phys. Rev. Lett. 110, 184192 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Utsunomiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Utsunomiya, S., Wen, K., Takata, K., Tamate, S., Yamamoto, Y. (2016). Coherent Computing with Injection-Locked Laser Network. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_10

Download citation

Publish with us

Policies and ethics