Skip to main content

Sphingolipid Metabolism via Sphingosine 1-Phosphate and Its Role in Physiology, Pathology, and Nutrition

  • Chapter
Bioactive Lipid Mediators
  • 1341 Accesses

Abstract

A delicate balance between the synthesis and degradation of sphingolipids must be kept to maintain cellular sphingolipid levels. Otherwise, cellular functions are impaired, leading to various disorders. Complex sphingolipids are degraded to sphingosine by the actions of a series of lysosomal hydrolases, mutations in the genes of which are known to be responsible for approximately ten sphingolipid storage diseases to date. The resultant sphingosine is either recycled to sphingolipids or metabolized to glycerophospholipids via sphingosine 1-phosphate (S1P). Extracellular S1P is well known to be a lipid mediator, whereas intracellular S1P is a key intermediate of the sphingolipid metabolic pathway linking sphingolipids to glycerophospholipids. This pathway is important for sphingolipid homeostasis, and its impairment results in several harmful effects on cells and tissues. We have recently identified and described in detail the downstream metabolic pathway of S1P. S1P is metabolized to palmitoyl-CoA via trans-2-hexadecenal, trans-2-hexadecenoic acid, and trans-2-hexadecenoyl-CoA, and then incorporated into glycerophospholipids. One of the genes involved in this pathway is ALDH3A2, the causative gene of Sjögren–Larsson syndrome. This review focuses on the physiological, pathological, and nutritional aspects of S1P as an intermediate of the sphingolipid-metabolic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kihara A, Mitsutake S, Mizutani Y, Igarashi Y (2007) Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 46:126–144

    Article  CAS  PubMed  Google Scholar 

  2. Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y (2009) Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 91:784–790

    Article  CAS  PubMed  Google Scholar 

  3. Kihara A (2012) Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem 152:387–395

    Article  CAS  PubMed  Google Scholar 

  4. Pontier SM, Schweisguth F (2012) Glycosphingolipids in signaling and development: from liposomes to model organisms. Dev Dyn 241:92–106

    Article  CAS  PubMed  Google Scholar 

  5. Mitsutake S, Igarashi Y (2013) Sphingolipids in lipid microdomains and obesity. Vitam Horm 91:271–284

    Article  CAS  PubMed  Google Scholar 

  6. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. Wiley, New York

    Google Scholar 

  7. Lowther J, Naismith JH, Dunn TM, Campopiano DJ (2012) Structural, mechanistic and regulatory studies of serine palmitoyltransferase. Biochem Soc Trans 40:547–554

    Article  CAS  PubMed  Google Scholar 

  8. Penno A, Reilly MM, Houlden H, Laura M, Rentsch K, Niederkofler V, Stoeckli ET, Nicholson G, Eichler F, Brown RH Jr, von Eckardstein A, Hornemann T (2010) Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem 285:11178–11187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kihara A, Igarashi Y (2004) FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem 279:49243–49250

    Article  CAS  PubMed  Google Scholar 

  10. Ternes P, Franke S, Zahringer U, Sperling P, Heinz E (2002) Identification and characterization of a sphingolipid Δ4-desaturase family. J Biol Chem 277:25512–25518

    Article  CAS  PubMed  Google Scholar 

  11. Jennemann R, Rabionet M, Gorgas K, Epstein S, Dalpke A, Rothermel U, Bayerle A, van der Hoeven F, Imgrund S, Kirsch J, Nickel W, Willecke K, Riezman H, Grone HJ, Sandhoff R (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet 21:586–608

    Article  CAS  PubMed  Google Scholar 

  12. Eckl KM, Tidhar R, Thiele H, Oji V, Hausser I, Brodesser S, Preil ML, Onal-Akan A, Stock F, Muller D, Becker K, Casper R, Nurnberg G, Altmuller J, Nurnberg P, Traupe H, Futerman AH, Hennies HC (2013) Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length. J Invest Dermatol 133:2202–2211

    Article  CAS  PubMed  Google Scholar 

  13. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci U S A 96:9142–9147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nishie T, Hikimochi Y, Zama K, Fukusumi Y, Ito M, Yokoyama H, Naruse C, Asano M (2010) β4-Galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extra-embryonic development. Glycobiology 20:1311–1322

    Article  CAS  PubMed  Google Scholar 

  15. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:209–219

    Article  CAS  PubMed  Google Scholar 

  16. Slotte JP (2013) Biological functions of sphingomyelins. Prog Lipid Res 52:424–437

    Article  CAS  PubMed  Google Scholar 

  17. Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 23:33–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yano M, Watanabe K, Yamamoto T, Ikeda K, Senokuchi T, Lu M, Kadomatsu T, Tsukano H, Ikawa M, Okabe M, Yamaoka S, Okazaki T, Umehara H, Gotoh T, Song WJ, Node K, Taguchi R, Yamagata K, Oike Y (2011) Mitochondrial dysfunction and increased reactive oxygen species impair insulin secretion in sphingomyelin synthase 1-null mice. J Biol Chem 286:3992–4002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Dong L, Watanabe K, Itoh M, Huan CR, Tong XP, Nakamura T, Miki M, Iwao H, Nakajima A, Sakai T, Kawanami T, Sawaki T, Masaki Y, Fukushima T, Fujita Y, Tanaka M, Yano M, Okazaki T, Umehara H (2012) CD4+ T-cell dysfunctions through the impaired lipid rafts ameliorate concanavalin A-induced hepatitis in sphingomyelin synthase 1-knockout mice. Int Immunol 24:327–337

    Article  CAS  PubMed  Google Scholar 

  20. Lu MH, Takemoto M, Watanabe K, Luo H, Nishimura M, Yano M, Tomimoto H, Okazaki T, Oike Y, Song WJ (2012) Deficiency of sphingomyelin synthase-1 but not sphingomyelin synthase-2 causes hearing impairments in mice. J Physiol 590:4029–4044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mitsutake S, Zama K, Yokota H, Yoshida T, Tanaka M, Mitsui M, Ikawa M, Okabe M, Tanaka Y, Yamashita T, Takemoto H, Okazaki T, Watanabe K, Igarashi Y (2011) Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes. J Biol Chem 286:28544–28555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Liu J, Huan C, Chakraborty M, Zhang H, Lu D, Kuo MS, Cao G, Jiang XC (2009) Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ Res 105:295–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gomez-Muñoz A, Gangoiti P, Arana L, Ouro A, Rivera IG, Ordoñez M, Trueba M (2013) New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta 1831:1060–1066

    Article  PubMed  Google Scholar 

  24. Boath A, Graf C, Lidome E, Ullrich T, Nussbaumer P, Bornancin F (2008) Regulation and traffic of ceramide 1-phosphate produced by ceramide kinase: comparative analysis to glucosylceramide and sphingomyelin. J Biol Chem 283:8517–8526

    Article  CAS  PubMed  Google Scholar 

  25. Sillence DJ, Platt FM (2003) Storage diseases: new insights into sphingolipid functions. Trends Cell Biol 13:195–203

    Article  CAS  PubMed  Google Scholar 

  26. Schulze H, Sandhoff K (2014) Sphingolipids and lysosomal pathologies. Biochim Biophys Acta 1841:799–810

    Article  CAS  PubMed  Google Scholar 

  27. Park JH, Schuchman EH (2006) Acid ceramidase and human disease. Biochim Biophys Acta 1758:2133–2138

    Article  CAS  PubMed  Google Scholar 

  28. Storch J, Xu Z (2009) Niemann-Pick C2 (NPC2) and intracellular cholesterol trafficking. Biochim Biophys Acta 1791:671–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Vanier MT (1983) Biochemical studies in Niemann-Pick disease. I. Major sphingolipids of liver and spleen. Biochim Biophys Acta 750:178–184

    Article  CAS  PubMed  Google Scholar 

  30. Tamargo RJ, Velayati A, Goldin E, Sidransky E (2012) The role of saposin C in Gaucher disease. Mol Genet Metab 106:257–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, Spiegel S (1998) Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273:23722–23728

    Article  CAS  PubMed  Google Scholar 

  32. Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275:19513–19520

    Article  CAS  PubMed  Google Scholar 

  33. Bigaud M, Guerini D, Billich A, Bassilana F, Brinkmann V (2014) Second generation S1P pathway modulators: research strategies and clinical developments. Biochim Biophys Acta 1841:745–758

    Article  CAS  PubMed  Google Scholar 

  34. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, Thornton R, Shei GJ, Card D, Keohane C, Rosenbach M, Hale J, Lynch CL, Rupprecht K, Parsons W, Rosen H (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349

    Article  CAS  PubMed  Google Scholar 

  35. Kihara A (2014) Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids. Biochim Biophys Acta 1841:766–772

    Article  CAS  PubMed  Google Scholar 

  36. Zhou J, Saba JD (1998) Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochem Biophys Res Commun 242:502–507

    Article  CAS  PubMed  Google Scholar 

  37. Vogel P, Donoviel MS, Read R, Hansen GM, Hazlewood J, Anderson SJ, Sun W, Swaffield J, Oravecz T (2009) Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS One 4:e4112

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bektas M, Allende ML, Lee BG, Chen W, Amar MJ, Remaley AT, Saba JD, Proia RL (2010) Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J Biol Chem 285:10880–10889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Allende ML, Bektas M, Lee BG, Bonifacino E, Kang J, Tuymetova G, Chen W, Saba JD, Proia RL (2011) Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J Biol Chem 286:7348–7358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Hagen-Euteneuer N, Lutjohann D, Park H, Merrill AH Jr, van Echten-Deckert G (2012) Sphingosine 1-phosphate (S1P) lyase deficiency increases sphingolipid formation via recycling at the expense of de novo biosynthesis in neurons. J Biol Chem 287:9128–9136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Nakahara K, Ohkuni A, Kitamura T, Abe K, Naganuma T, Ohno Y, Zoeller RA, Kihara A (2012) The Sjögren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol Cell 46:461–471

    Article  CAS  PubMed  Google Scholar 

  42. Wakashima T, Abe K, Kihara A (2014) Dual functions of the trans-2-enoyl-CoA reductase TER in the sphingosine 1-phosphate metabolic pathway and in fatty acid elongation. J Biol Chem 289:24736–24748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ohkuni A, Ohno Y, Kihara A (2013) Identification of acyl-CoA synthetases involved in the mammalian sphingosine 1-phosphate metabolic pathway. Biochem Biophys Res Commun 442:195–201

    Article  CAS  PubMed  Google Scholar 

  44. Kelson TL, Secor McVoy JR, Rizzo WB (1997) Human liver fatty aldehyde dehydrogenase: microsomal localization, purification, and biochemical characterization. Biochim Biophys Acta 1335:99–110

    Article  CAS  PubMed  Google Scholar 

  45. Rizzo WB (2011) The role of fatty aldehyde dehydrogenase in epidermal structure and function. Dermatoendocrinology 3:91–99

    Article  CAS  Google Scholar 

  46. Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11

    Article  PubMed  Google Scholar 

  47. Fukuda Y, Kihara A, Igarashi Y (2003) Distribution of sphingosine kinase activity in mouse tissues: contribution of SPHK1. Biochem Biophys Res Commun 309:155–160

    Article  CAS  PubMed  Google Scholar 

  48. Ikeda M, Kihara A, Igarashi Y (2004) Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5′-phosphate binding domain exposed to the cytosol. Biochem Biophys Res Commun 325:338–343

    Article  CAS  PubMed  Google Scholar 

  49. Watkins PA, Maiguel D, Jia Z, Pevsner J (2007) Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 48:2736–2750

    Article  CAS  PubMed  Google Scholar 

  50. Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129:1239–1250

    CAS  PubMed  Google Scholar 

  51. Imaizumi K, Tominaga A, Sato M, Sugano M (1992) Effects of dietary sphingolipids on levels of serum and liver lipids in rats. Nutr Res 12:543–548

    Article  CAS  Google Scholar 

  52. Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr (1994) Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124:615–620

    CAS  PubMed  Google Scholar 

  53. Schmelz EM, Dillehay DL, Webb SK, Reiter A, Adams J, Merrill AH Jr (1996) Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res 56:4936–4941

    CAS  PubMed  Google Scholar 

  54. Kobayashi T, Shimizugawa T, Osakabe T, Watanabe S, Okuyama H (1997) A long-term feeding of sphingolipids affected the levels of plasma cholesterol and hepatic triacylglycerol but tissue phospholipids and sphingolipids. Nutr Res 17:111–114

    Article  CAS  Google Scholar 

  55. Duan J, Sugawara T, Sakai S, Aida K, Hirata T (2011) Oral glucosylceramide reduces 2,4-dinitrofluorobenzene induced inflammatory response in mice by reducing TNF-α levels and leukocyte infiltration. Lipids 46:505–512

    Article  CAS  PubMed  Google Scholar 

  56. Duan J, Sugawara T, Hirose M, Aida K, Sakai S, Fujii A, Hirata T (2012) Dietary sphingolipids improve skin barrier functions via the upregulation of ceramide synthases in the epidermis. Exp Dermatol 21:448–452

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Y, Cheng Y, Hansen GH, Niels-Christiansen LL, Koentgen F, Ohlsson L, Nilsson A, Duan RD (2011) Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice. J Lipid Res 52:771–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kono M, Dreier JL, Ellis JM, Allende ML, Kalkofen DN, Sanders KM, Bielawski J, Bielawska A, Hannun YA, Proia RL (2006) Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 281:7324–7331

    Article  CAS  PubMed  Google Scholar 

  59. Zhao Y, Kalari SK, Usatyuk PV, Gorshkova I, He D, Watkins T, Brindley DN, Sun C, Bittman R, Garcia JG, Berdyshev EV, Natarajan V (2007) Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J Biol Chem 282:14165–14177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Stoffel W, Sticht G (1967) Metabolism of sphingosine bases. I. Degradation and incorporation of [3-14C]erythro-dl-dihydrosphingosine and [7-3H2]erythro-dl-sphingosine into sphingolipids of rat liver. Hoppe Seylers Z Physiol Chem 348:941–943

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Kihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kihara, A. (2015). Sphingolipid Metabolism via Sphingosine 1-Phosphate and Its Role in Physiology, Pathology, and Nutrition. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_9

Download citation

Publish with us

Policies and ethics