Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 703 Accesses

Abstract

We study the skyrmion formation in nanostructured FeGe Hall-bar devices by measurements of topological Hall effect, which extracts the winding number of a spin texture as an emergent magnetic field. Stepwise profiles of the topological Hall resistivity are observed in the course of varying the applied magnetic field, which arise from instantaneous changes in the magnetic structure such as creation, annihilation, and discontinuous motion of skyrmions. The discrete changes in topological Hall resistivity demonstrate the quantized nature of emergent magnetic flux inherent in each skyrmion, which had been indistinguishable in many-skyrmion systems on a macroscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are experimental reports studying finite-size effect on skyrmion formation by real-space observation [23] and resistivity measurements [24] in MnSi nanowires. However, the wire width is still too large to feature the individual skyrmions.

  2. 2.

    Unavoidable side damage in the etching process would have greater influence on the smaller devices, which may be a crucial damage in the 32-nm device related to the inhibition of skyrmion formation. However, considering the magnetization property of FeGe remains in the Hall resistivity in the 32-nm device, there should be some effects of miniaturization on suppression of skyrmion formation, although we could not estimate the exact value of the threshold size.

References

  1. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P.G. Niklowitz, P. Böni, Phys. Rev. Lett. 102, 186602 (2009)

    Article  ADS  Google Scholar 

  2. M. Lee, W. Kang, Y. Onose, Y. Tokura, N.P. Ong, Phys. Rev. Lett. 102, 186601 (2009)

    Article  ADS  Google Scholar 

  3. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011)

    Article  ADS  Google Scholar 

  4. B.J. Chapman, M.G. Grossnickle, T. Wolf, M. Lee, Phys. Rev. B 88, 214406 (2013)

    Article  ADS  Google Scholar 

  5. R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer, C. Pfleiderer, Nature (London) 497, 231 (2013)

    Article  ADS  Google Scholar 

  6. C. Franz, F. Freimuth, A. Bauer, R. Ritz, C. Schnarr, C. Duvinage, T. Adams, S. Blügel, A. Rosch, Y. Mokrousov, C. Pfleiderer, Phys. Rev. Lett. 102, 186601 (2014)

    Article  ADS  Google Scholar 

  7. A. Fert, V. Cros, J. Sampaio, Nat. Nanotech. 8, 152 (2013)

    Article  ADS  Google Scholar 

  8. N. Nagaosa, Y. Tokura, Nat. Nanotech. 8, 899 (2013)

    Article  ADS  Google Scholar 

  9. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  10. S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, S. Blügel, Nat. Phys. 7, 713 (2011)

    Article  Google Scholar 

  11. K. Shibata, X.Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Nanotech. 8, 723 (2013)

    Article  ADS  Google Scholar 

  12. F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R.A. Duine, K. Everschor, M. Garst, A. Rosch, Science 330, 1648 (2010)

    Article  ADS  Google Scholar 

  13. X.Z. Yu, N. Kanazawa, W.Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, Y. Tokura, Nat. Commun. 3, 988 (2012)

    Article  ADS  Google Scholar 

  14. N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Science 341, 636 (2013)

    Article  ADS  Google Scholar 

  15. S.X. Huang, C.L. Chien, Phys. Rev. Lett. 108, 267201 (2012)

    Article  ADS  Google Scholar 

  16. Y. Li, N. Kanazawa, X.Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X.F. Jin, F. Kagawa, Y. Tokura, Phys. Rev. Lett. 110, 117202 (2013)

    Article  ADS  Google Scholar 

  17. T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, M. Kawasaki, M. Ichikawa, F. Kagawa, Y. Tokura, Phys. Rev. B 89, 064416 (2014)

    Article  ADS  Google Scholar 

  18. H. Du, W. Ning, M. Tian, Y. Zhang, Phys. Rev. B 87, 014401 (2013)

    Article  ADS  Google Scholar 

  19. L. Sun, R.X. Cao, B.F. Miao, Z. Feng, B. You, D. Wu, W. Zhang, An Hu, H.F. Ding, Phys. Rev. Lett. 110, 167201 (2013)

    Article  ADS  Google Scholar 

  20. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nat. Nanotech. 8, 839 (2013)

    Article  ADS  Google Scholar 

  21. S. Rohart, A. Thiaville, Phys. Rev. B 88, 184422 (2013)

    Article  ADS  Google Scholar 

  22. M. Beg, D. Chernyshenko, M.A. Bisotti, W.W. Wang, M. Albert, R.L. Stamps, H. Fangohr, arXiv: 1312.7665v2

  23. X.Z. Yu, J.P. DeGrave, Y. Hara, S. Jin, Y. Tokura, Nano Lett. 13, 3755 (2013)

    Article  ADS  Google Scholar 

  24. H. Du, J.P. DeGrave, F. Xue, D. Liang, W. Ning, J. Yang, M. Tian, Y. Zhang, S. Jin, Nano Lett. 14, 2026 (2014)

    Article  ADS  Google Scholar 

  25. Y. Onose, N. Takeshita, C. Terakura, H. Takagi, Y. Tokura, Phys. Rev. B 72, 224431 (2005)

    Article  ADS  Google Scholar 

  26. N. Kanazawa, M. Kubota, A. Tsukazaki, Y. Kozuka, K.S. Takahashi, M. Kawasaki, M. Ichikawa, F. Kagawa, Y. Tokura, Phys. Rev. B 91, 041122(R) (2015)

    Article  ADS  Google Scholar 

  27. Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, Y. Tokura, Science 291, 2573 (2001)

    Article  ADS  Google Scholar 

  28. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)

    Article  ADS  Google Scholar 

  29. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature (London) 465, 901 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Kanazawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kanazawa, N. (2015). Skyrmion Formation in Epitaxial FeGe Thin Films. In: Charge and Heat Transport Phenomena in Electronic and Spin Structures in B20-type Compounds. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55660-2_5

Download citation

Publish with us

Policies and ethics