Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 739 Accesses

Abstract

We have observed topological Hall effect over a wide temperature-magnetic field region in a B20-type MnGe. The magnitude of the topological Hall resistivity is nearly temperature-independent below 70 K, which reflects the real-space emergent magnetic field proportional to a geometric quantity, so-called scalar spin chirality, of the underlying non-coplanar spin texture. From high- and small-angle neutron diffraction studies, it is anticipated that a relatively short-period (3–6 nm) topological spin structure, possibly 3D skyrmion crystal composed of three orthogonal helical structures, is stabilized as the ground state to produce the largest topological Hall response among the B20-type bulk magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The magnetic modulation period is almost constant below 70 K; the emergent field also remains constant in the temperature range of the present focus.

  2. 2.

    Various skyrmion ground states other than the triangular lattice form have been theoretically proposed [1215].

References

  1. M.V. Berry, Proc. R. Soc. Lond. A Math. Phys. Sci. 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

  2. N. Nagaosa, Y. Tokura, Phys. Scr. T146, 014020 (2012)

    Article  ADS  Google Scholar 

  3. D. Xiao, M.C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010)

    Article  ADS  Google Scholar 

  5. M. Onoda, G. Tatara, N. Nagaosa, J. Phys. Soc. Jpn. 73, 2624 (2004)

    Article  ADS  MATH  Google Scholar 

  6. Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, Y. Tokura, Science 291, 2573 (2001)

    Article  ADS  Google Scholar 

  7. Y. Machida, S. Nakatsuji, Y. Maeno, T. Tayama, T. Sakakibara, S. Onoda, Phys. Rev. Lett. 98, 057203 (2007)

    Article  ADS  Google Scholar 

  8. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P.G. Niklowitz, P. Böni, Phys. Rev. Lett. 102, 186602 (2009)

    Article  ADS  Google Scholar 

  9. M. Lee, W. Kang, Y. Onose, Y. Tokura, N.P. Ong, Phys. Rev. Lett. 102, 186601 (2009)

    Article  ADS  Google Scholar 

  10. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011)

    Article  ADS  Google Scholar 

  11. M. Lee, Y. Onose, Y. Tokura, N.P. Ong, Phys. Rev. B 75, 172403 (2007)

    Article  ADS  Google Scholar 

  12. B. Binz, A. Vishwanath, V. Aji, Phys. Rev. Lett. 96, 207202 (2006)

    Article  ADS  Google Scholar 

  13. U.K. Rößler, A.N. Bogdanov, C. Pfleiderer, Nature (London) 442, 797 (2006)

    Article  ADS  Google Scholar 

  14. S.D. Yi, S. Onoda, N. Nagaosa, J.H. Han, Phys. Rev. B 80, 054416 (2009)

    Article  ADS  Google Scholar 

  15. J.H. Park, J.H. Han, Phys. Rev. B 83, 184406 (2011)

    Article  ADS  Google Scholar 

  16. N. Kanazawa, J.-H. Kim, D.S. Inosov, J.S. White, N. Egetenmeyer, J.L. Gavilano, S. Ishiwata, Y. Onose, T. Arima, B. Keimer, Y. Tokura, Phys. Rev. B 86, 134425 (2012)

    Article  ADS  Google Scholar 

  17. O.L. Makarova, A.V. Tsvyashchenko, G. Andre, F. Porcher, L.N. Fomicheva, N. Rey, I. Mirebeau, Phys. Rev. B 85, 205205 (2012)

    Article  ADS  Google Scholar 

  18. M. Takeda, Y. Endoh, K. Kakurai, Y. Onose, J. Suzuki, Y. Tokura, J. Phys. Soc. Jpn. 78, 093704 (2009)

    Article  ADS  Google Scholar 

  19. S.V. Grigoriev, S.V. Maleyev, A.I. Okorokov, Y.O. Chetverikov, H. Eckerlebe, Phys. Rev. B 73, 224440 (2006)

    Article  ADS  Google Scholar 

  20. S. Okada, T. Shishido, M. Ogawa, F. Matsukawa, Y. Ishizawa, K. Nakajima, T. Fukuda, T. Lundström, J. Cryst. Growth 229, 532 (2001)

    Article  ADS  Google Scholar 

  21. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature (London) 465, 901 (2010)

    Article  ADS  Google Scholar 

  22. U.K. Rößler, A.A. Leonov, A.N. Bogdanov, J. Phys. Conf. Ser. 303, 012105 (2011)

    Article  ADS  Google Scholar 

  23. B. Binz, A. Vishwanath, Phys. B 403, 1336 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Kanazawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kanazawa, N. (2015). 3D Skyrmion-Lattice and Topological Hall Effect in MnGe. In: Charge and Heat Transport Phenomena in Electronic and Spin Structures in B20-type Compounds. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55660-2_4

Download citation

Publish with us

Policies and ethics