Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 751 Accesses

Abstract

Compounds of transition-metal element and group-14 element with composition ratio of 1:1 sometimes crystallize into a so-called B20-type structure with noncentrosymmetric space group \(P2_13\). Those compounds are named to be “B20-type compounds” after their crystal structure. Their various interesting physical properties have been a source of extensive research activities for almost half a century, offering new research areas as represented by discovery of magnetic skyrmions in chiral-lattice magnets [7, 31]. This thesis is devoted to electrical and thermal transport experiments performed on 3d-transition-metal germanium compounds with the B20-type crystal structure, whose physical properties have been scarcely investigated. Our findings in the germanide system are not just to confirm the physics already revealed in other B20-systems, but explore new insights and phenomena in chiral-lattice compounds. In this Chapter, we review basic properties of B20-type compounds, i.e., their crystal structure and characteristic electronic/spin structures, for better understanding of novel transport properties emerging in the germanide system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many models for FeSi have been proposed, such as Kondo insulator [3].

References

  1. Y. Ishikawa, K. Tajima, D. Bloch, M. Roth, Solid State Commun. 19, 525 (1976)

    Article  ADS  Google Scholar 

  2. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985)

    Book  Google Scholar 

  3. G. Aeppli, Z. Fisk, Comments. Condens. Matter Phys. 16, 155 (1992)

    Google Scholar 

  4. D.M. Rowe, CRC Handbook of Thermoelectrics (CRC, Boca Raton, FL, 1995)

    Book  Google Scholar 

  5. L. Pauling, A.M. Soldate, Acta Cryst. 1, 212 (1948)

    Article  Google Scholar 

  6. V.I. Larchev, S.V. Popova, J. Less-Common Met. 87, 53 (1982)

    Article  Google Scholar 

  7. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)

    Article  ADS  Google Scholar 

  8. M. Uchida, Y. Onose, Y. Matsui, Y. Tokura, Science 311, 359 (2006)

    Google Scholar 

  9. P. Bak, M.H. Jensen, J. Phys. C 13, L881 (1980)

    Article  ADS  Google Scholar 

  10. O. Nakanishi, A. Yanase, A. Hasegawa, M. Kataoka, Solid State Commun. 35, 995 (1980)

    Article  ADS  Google Scholar 

  11. M. Kataoka, J. Phys. Soc. Jpn. 56, 3635 (1986)

    Article  ADS  Google Scholar 

  12. S.V. Grigoriev, S.V. Maleyev, A.I. Okorokov, Y.O. Chetverikov, H. Eckerlebe, Phys. Rev. B 73, 224440 (2006)

    Article  ADS  Google Scholar 

  13. S.V. Grigoriev, V.A. Dyadkin, D. Menzel, J. Schoenes, Y.O. Chetverikov, A.I. Okorokov, H. Eckerlebe, S.V. Maleyev, Phys. Rev. B 76, 224424 (2007)

    Article  ADS  Google Scholar 

  14. M. Takeda, Y. Endoh, K. Kakurai, Y. Onose, J. Suzuki, Y. Tokura, J. Phys. Soc. Jpn. 78, 093704 (2009)

    Article  ADS  Google Scholar 

  15. K. Ishizuka, B. Allman, J. Electron Microsc. 54, 191 (2005)

    Article  Google Scholar 

  16. J. Beille, J. Voiron, M. Roth, Solid State Commun. 47, 399 (1983)

    Article  ADS  Google Scholar 

  17. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011)

    Article  ADS  Google Scholar 

  18. N. Kanazawa, J.-H. Kim, D.S. Inosov, J.S. White, N. Egetenmeyer, J.L. Gavilano, S. Ishiwata, Y. Onose, T. Arima, B. Keimer, Y. Tokura, Phys. Rev. B 86, 134425 (2012)

    Article  ADS  Google Scholar 

  19. Y. Li, N. Kanazawa, X.Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin, F. Kagawa and Y. Tokura. Phys. Rev. Lett. 110, 117202 (2013)

    Google Scholar 

  20. S.V. Grigoriev, V.A. Dyadkin, E.V. Moskvin, D. Lamago, Th Wolf, H. Eckerlebe, S.V. Maleyev, Phys. Rev. B 79, 144417 (2009)

    Article  ADS  Google Scholar 

  21. Y. Onose, N. Takeshita, C. Terakura, H. Takagi, Y. Tokura, Phys. Rev. B 72, 224431 (2005)

    Article  ADS  Google Scholar 

  22. K. Shibata, X.Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Nanotechnol. 8, 723 (2013)

    Article  ADS  Google Scholar 

  23. B. Lebech, J. Bernhard, T. Freltoft, J. Phys.: Condens. Matter 1, 6105 (1989)

    ADS  Google Scholar 

  24. T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, C. Pfleiderer, Phys. Rev. Lett. 108, 237204 (2012)

    Article  ADS  Google Scholar 

  25. S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Science 336, 198 (2012)

    Article  ADS  Google Scholar 

  26. S. Kusaka, K. Yamamoto, T. Komatsubara, Y. Ishikawa, Solid State Commun. 20, 925 (1976)

    Article  ADS  Google Scholar 

  27. M. Date, K. Okuda, K. Kadowaki, J. Phys. Soc. Jpn. 42, 1555 (1977)

    Article  ADS  Google Scholar 

  28. K. Kadowaki, K. Okuda, M. Date, J. Phys. Soc. Jpn. 51, 2433 (1981)

    Article  ADS  Google Scholar 

  29. A. Bogdanov, D.A. Yablonskii, Sov. Phys. JETP 68, 101 (1989)

    Google Scholar 

  30. A. Bogdanov, A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994)

    Article  ADS  Google Scholar 

  31. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature (London) 465, 901 (2010)

    Article  ADS  Google Scholar 

  32. T.H.R. Skyrme, Proc. R. Soc. A 260, 127 (1961); T.H.R. Skyrme. Nucl. Phys. 31, 556 (1962)

    Article  MathSciNet  Google Scholar 

  33. C. Pfleiderer, D. Reznik, L. Pintschovius, H.v. Löhneysen, M. Garst, A. Rosch. Nature 427, 227 (2004)

    Article  ADS  Google Scholar 

  34. U.K. Rößler, A.N. Bogdanov, C. Pfleiderer, Nature 442, 797 (2006)

    Article  ADS  Google Scholar 

  35. B. Binz, A. Vishwanath, V. Aji, Phys. Rev. Lett. 96, 207202 (2006)

    Article  ADS  Google Scholar 

  36. I. Fischer, N. Shah, A. Rosch, Phys. Rev. B 77, 024415 (2008)

    Article  ADS  Google Scholar 

  37. O. Nakanishi, A. Yanase, A. Hasegawa, J. Magn. Magn. Mater. 15–18, 879 (1980)

    Article  Google Scholar 

  38. L.F. Mattheiss, D.R. Hamann, Phys. Rev. B 47, 13114 (1993)

    Article  ADS  Google Scholar 

  39. A. Sakai, F. Ishii, Y. Onose, Y. Tomioka, S. Yotsuhashi, H. Adachi, N. Nagaosa, Y. Tokura, J. Phys. Soc. Jpn. 76, 093601 (2007)

    Article  ADS  Google Scholar 

  40. S. Yeo, S. Nakatsuji, A.D. Bianchi, P. Schlottmann, Z. Fisk, L. Balicas, P.A. Stampe, R.J. Kennedy, Phys. Rev. Lett. 91, 046401 (2003)

    Article  ADS  Google Scholar 

  41. V.I. Anisimov, R. Hlubina, M.A. Korotin, V.V. Mazurenko, T.M. Rice, A.O. Shorikov, M. Sigrist, Phys. Rev. Lett. 89, 257203 (2002)

    Article  ADS  Google Scholar 

  42. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  43. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Kanazawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kanazawa, N. (2015). Introduction. In: Charge and Heat Transport Phenomena in Electronic and Spin Structures in B20-type Compounds. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55660-2_1

Download citation

Publish with us

Policies and ethics