Skip to main content

Glycan Structure and Neural Plasticity

  • Chapter
  • First Online:
Sugar Chains

Abstract

Extracellular factors that surround cell surfaces play essential roles in a wide spectrum of neurobiological functions, including neuronal development and neuronal plasticity. Glycans are ubiquitous throughout the extracellular and pericellular spaces, and they may function as microenvironmental cues during neuronal development and remodeling. Recent advances in the field of glyco-neuroscience clearly indicate that distinct glycans, especially sulfated glycosaminoglycan (GAG) chains, are functionally relevant to neuronal plasticity. This chapter reviews current research findings on neuroregulatory glycans and focuses primarily on structural divergence among sulfated GAG chains and their unique and/or partially overlapping contributions to neuronal plasticity during development and during regeneration after central nervous system injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afshari FT, Kwok JC, White L, Fawcett JW (2010) Schwann cell migration is integrin-dependent and inhibited by astrocyte-produced aggrecan. Glia 58:857–869

    PubMed  Google Scholar 

  • Berretta S (2012) Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 62:1584–1597

    Article  CAS  PubMed  Google Scholar 

  • Beurdeley M, Spatazza J, Lee HH, Sugiyama S, Bernard C, Di Nardo AA, Hensch TK, Prochiantz A (2012) Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 32:9429–9437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biernaskie J, Corbett D (2001) Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci 21:5272–5280

    CAS  PubMed  Google Scholar 

  • Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  CAS  PubMed  Google Scholar 

  • Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, Krug M, Böckers TM, Zhou X, Kreutz MR, Montag D, Gundelfinger ED, Fässler R (2002) Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol Cell Biol 22:7417–7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JM, Xia J, Zhuang B, Cho KS, Rogers CJ, Gama CI, Rawat M, Tully SE, Uetani N, Mason DE, Tremblay ML, Peters EC, Habuchi O, Chen DF, Hsieh-Wilson LC (2012) A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proc Natl Acad Sci U S A 109:4768–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukalo O, Schachner M, Dityatev A (2001) Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience 104:359–369

    Article  CAS  PubMed  Google Scholar 

  • Carulli D, Laabs T, Geller HM, Fawcett JW (2005) Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 15:116–120

    Article  PubMed  CAS  Google Scholar 

  • Carulli D, Rhodes KE, Fawcett JW (2007) Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J Comp Neurol 501:83–94

    Article  CAS  PubMed  Google Scholar 

  • Chien PN, Ryu SE (2013) Protein tyrosine phosphatase σ in proteoglycan-mediated neural regeneration regulation. Mol Neurobiol 47:220–227

    Article  CAS  PubMed  Google Scholar 

  • Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, Gallagher JT, Jones EY, Flanagan JG, Aricescu AR (2011) Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension. Science 332:484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condic ML, Snow DM, Letourneau PC (1999) Embryonic neurons adapt to the inhibitory proteoglycan aggrecan by increasing integrin expression. J Neurosci 19:10036–10043

    CAS  PubMed  Google Scholar 

  • Cui H, Freeman C, Jacobson GA, Small DH (2013) Proteoglycans in the central nervous system: role in development, neural repair, and Alzheimer’s disease. IUBMB Life 65:108–120

    Article  CAS  PubMed  Google Scholar 

  • Dick G, Tan CL, Alves JN, Ehlert EM, Miller GM, Hsieh-Wilson LC, Sugahara K, Oosterhof A, van Kuppevelt TH, Verhaagen J, Fawcett JW, Kwok JC (2013) Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J Biol Chem 288:27384–27395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, Wood A, Geoffroy CG, Zheng B, Liepmann CD, Katagiri Y, Benowitz LI, Geller HM, Giger RJ (2012) NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15:703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4:456–468

    Article  CAS  PubMed  Google Scholar 

  • Dours-Zimmermann MT, Maurer K, Rauch U, Stoffel W, Fässler R, Zimmermann DR (2009) Versican V2 assembles the extracellular matrix surrounding the nodes of ranvier in the CNS. J Neurosci 29:7731–7742

    Article  CAS  PubMed  Google Scholar 

  • Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR (2004) Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 27:145–167

    Article  CAS  PubMed  Google Scholar 

  • Fagiolini M, Fritschy JM, Löw K, Möhler H, Rudolph U, Hensch TK (2004) Specific GABAA circuits for visual cortical plasticity. Science 303:1681–1683

    Article  CAS  PubMed  Google Scholar 

  • Feldman DE (2000) Inhibition and plasticity. Nat Neurosci 3:303–304

    Article  CAS  PubMed  Google Scholar 

  • Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL, Bachoo R, Cannon S, Longo FM, Sheng M, Silver J, Li S (2011) Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 31:14051–14066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12:897–904

    Article  CAS  PubMed  Google Scholar 

  • Funderburgh JL (2000) Keratan sulfate: structure, biosynthesis, and function. Glycobiology 10:951–958

    Article  CAS  PubMed  Google Scholar 

  • Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54:1–18

    Article  CAS  PubMed  Google Scholar 

  • Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, Goddard WA 3rd, Nishi A, Hsieh-Wilson LC (2006) Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2:467–473

    Article  CAS  PubMed  Google Scholar 

  • García-Alías G, Fawcett JW (2012) Training and anti-CSPG combination therapy for spinal cord injury. Exp Neurol 235:26–32

    Article  PubMed  CAS  Google Scholar 

  • García-Alías G, Barkhuysen S, Buckle M, Fawcett JW (2009) Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 12:1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Giamanco KA, Morawski M, Matthews RT (2010) Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170:1314–1327

    Article  CAS  PubMed  Google Scholar 

  • Gingras J, Rassadi S, Cooper E, Ferns M (2002) Agrin plays an organizing role in the formation of sympathetic synapses. J Cell Biol 158:1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogolla N, Caroni P, Lüthi A, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 325:1258–1261

    Article  CAS  PubMed  Google Scholar 

  • Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16:3274–3286

    CAS  PubMed  Google Scholar 

  • Harauzov A, Spolidoro M, DiCristo G, De Pasquale R, Cancedda L, Pizzorusso T, Viegi A, Berardi N, Maffei L (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30:361–371

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  CAS  PubMed  Google Scholar 

  • Hilton BJ, Lang BT, Cregg JM (2012) Keratan sulfate proteoglycans in plasticity and recovery after spinal cord injury. J Neurosci 32:4331–4333

    Article  CAS  PubMed  Google Scholar 

  • Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755

    Article  CAS  PubMed  Google Scholar 

  • Imagama S, Sakamoto K, Tauchi R, Shinjo R, Ohgomori T, Ito Z, Zhang H, Nishida Y, Asami N, Takeshita S, Sugiura N, Watanabe H, Yamashita T, Ishiguro N, Matsuyama Y, Kadomatsu K (2011) Keratan sulfate restricts neural plasticity after spinal cord injury. J Neurosci 31:17091–17102

    Article  CAS  PubMed  Google Scholar 

  • Irie F, Badie-Mahdavi H, Yamaguchi Y (2012) Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci U S A 109:5052–5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iseki K, Hagino S, Mori T, Zhang Y, Yokoya S, Takaki H, Tase C, Murakawa M, Wanaka A (2002) Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia 39:1–9

    Article  PubMed  Google Scholar 

  • Itano N, Kimata K (2002) Mammalian hyaluronan synthases. IUBMB Life 54:195–199

    Article  CAS  PubMed  Google Scholar 

  • Ito Z, Sakamoto K, Imagama S, Matsuyama Y, Zhang H, Hirano K, Ando K, Yamashita T, Ishiguro N, Kadomatsu K (2010) N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury. J Neurosci 30:5937–5947

    Article  CAS  PubMed  Google Scholar 

  • Izumikawa T, Saigoh K, Shimizu J, Tsuji S, Kusunoki S, Kitagawa H (2013) A chondroitin synthase-1 (ChSy-1) missense mutation in a patient with neuropathy impairs the elongation of chondroitin sulfate chains initiated by chondroitin N-acetylgalactosaminyltransferase-1. Biochim Biophys Acta 1830:4806–4812

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Huang ZJ, Morales B, Kirkwood A (2005) Maturation of GABAergic transmission and the timing of plasticity in visual cortex. Brain Res Brain Res Rev 50:126–133

    Article  CAS  PubMed  Google Scholar 

  • Kadomatsu K, Sakamoto K (2014) Sulfated glycans in network rewiring and plasticity after neuronal injuries. Neurosci Res 78:50–54

    Article  CAS  PubMed  Google Scholar 

  • Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ, Flanagan JG, Yamaguchi Y, Sretavan DW, Giger RJ, Kolodkin AL (2004) Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44:961–975

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa H, Tsutsumi K, Tone Y, Sugahara K (1997) Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain. J Biol Chem 272:31377–31381

    Article  CAS  PubMed  Google Scholar 

  • Koike T, Izumikawa T, Tamura J, Kitagawa H (2009) FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan-protein linkage region. Biochem J 421:157–162

    Article  CAS  PubMed  Google Scholar 

  • Koike T, Izumikawa T, Sato B, Kitagawa H (2014) Identification of phosphatase that dephosphorylates xylose in the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 289:6695–6708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köppe G, Brückner G, Härtig W, Delpech B, Bigl V (1997) Characterization of proteoglycan-containing perineuronal nets by enzymatic treatments of rat brain sections. Histochem J 29:11–20

    Article  PubMed  Google Scholar 

  • Ksiazek I, Burkhardt C, Lin S, Seddik R, Maj M, Bezakova G, Jucker M, Arber S, Caroni P, Sanes JR, Bettler B, Ruegg MA (2007) Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci 27:7183–7195

    Article  CAS  PubMed  Google Scholar 

  • Kurihara D, Yamashita T (2012) Chondroitin sulfate proteoglycans down-regulate spine formation in cortical neurons by targeting tropomyosin-related kinase B (TrkB) protein. J Biol Chem 287:13822–13828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusche-Gullberg M, Kjellén L (2003) Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 13:605–611

    Article  CAS  PubMed  Google Scholar 

  • Kwok JC, Carulli D, Fawcett JW (2010) In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem 114:1447–1459

    CAS  PubMed  Google Scholar 

  • Kwok JC, Dick G, Wang D, Fawcett JW (2011a) Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 71:1073–1089

    Article  CAS  PubMed  Google Scholar 

  • Kwok JC, Tan CL, Wang D, Heller J, Fawcett JW (2011b) Chondroitin sulfates in axon regeneration and plasticity. Trends Glycosci Glycotechnol 23:201–211

    Article  CAS  Google Scholar 

  • Lin YL, Lei YT, Hong CJ, Hsueh YP (2007) Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. J Cell Biol 177:829–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin R, Rosahl TW, Whiting PJ, Fawcett JW, Kwok JC (2011) 6-Sulphated chondroitins have a positive influence on axonal regeneration. PLoS One 6:e21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chau CH, Liu H, Jang BR, Li X, Chan YS, Shum DK (2006) Upregulation of chondroitin 6-sulphotransferase-1 facilitates Schwann cell migration during axonal growth. J Cell Sci 119:933–942

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Ishii M, Nishimura K, Kamimura K (2011) Functions of chondroitin sulfate and heparan sulfate in the developing brain. Neurochem Res 36:1228–1240

    Article  CAS  PubMed  Google Scholar 

  • McKeon RJ, Höke A, Silver J (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136:32–43

    Article  CAS  PubMed  Google Scholar 

  • Mikami T, Kitagawa H (2013) Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830:4719–4733

    Article  CAS  PubMed  Google Scholar 

  • Mikami T, Yasunaga D, Kitagawa H (2009) Contactin-1 is a functional receptor for neuroregulatory chondroitin sulfate-E. J Biol Chem 284:4494–4499

    Article  CAS  PubMed  Google Scholar 

  • Mitsunaga C, Mikami T, Mizumoto S, Fukuda J, Sugahara K (2006) Chondroitin sulfate/dermatan sulfate hybrid chains in the development of cerebellum. Spatiotemporal regulation of the expression of critical disulfated disaccharides by specific sulfotransferases. J Biol Chem 281:18942–18952

    Article  CAS  PubMed  Google Scholar 

  • Miyata S, Komatsu Y, Yoshimura Y, Taya C, Kitagawa H (2012) Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat Neurosci 15:414–422

    Article  CAS  PubMed  Google Scholar 

  • Moon LD, Asher RA, Rhodes KE, Fawcett JW (2001) Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci 4:465–466

    CAS  PubMed  Google Scholar 

  • Moon LD, Asher RA, Rhodes KE, Fawcett JW (2002) Relationship between sprouting axons, proteoglycans and glial cells following unilateral nigrostriatal axotomy in the adult rat. Neuroscience 109:101–117

    Article  CAS  PubMed  Google Scholar 

  • Nadanaka S, Kitagawa H (2008) Heparan sulfate biosynthesis and disease. J Biochem 144:7–14

    Article  CAS  PubMed  Google Scholar 

  • Nadanaka S, Zhou S, Kagiyama S, Shoji N, Sugahara K, Sugihara K, Asano M, Kitagawa H (2013) EXTL2, a member of the EXT family of tumor suppressors, controls glycosaminoglycan biosynthesis in a xylose kinase-dependent manner. J Biol Chem 288:9321–9333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo ST, Noakes PG, Phillips WD (2007) Neural agrin: a synaptic stabiliser. Int J Biochem Cell Biol 39:863–867

    Article  CAS  PubMed  Google Scholar 

  • Novak U, Kaye AH (2000) Extracellular matrix and the brain: components and function. J Clin Neurosci 7:280–290

    Article  CAS  PubMed  Google Scholar 

  • Orlando C, Ster J, Gerber U, Fawcett JW, Raineteau O (2012) Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J Neurosci 32:18009–18017

    Article  CAS  PubMed  Google Scholar 

  • Pasterkamp RJ, Giger RJ, Ruitenberg MJ, Holtmaat AJ, De Wit J, De Winter F, Verhaagen J (1999) Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci 13:143–166

    Article  CAS  PubMed  Google Scholar 

  • Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251

    Article  CAS  PubMed  Google Scholar 

  • Pizzorusso T, Medini P, Landi S, Baldini S, Berardi N, Maffei L (2006) Structural and functional recovery from early monocular deprivation in adult rats. Proc Natl Acad Sci U S A 103:8517–8522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Properzi F, Carulli D, Asher RA, Muir E, Camargo LM, van Kuppevelt TH, ten Dam GB, Furukawa Y, Mikami T, Sugahara K, Toida T, Geller HM, Fawcett JW (2005) Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. Eur J Neurosci 21:378–390

    Article  PubMed  Google Scholar 

  • Properzi F, Lin R, Kwok J, Naidu M, van Kuppevelt TH, Ten Dam GB, Camargo LM, Raha-Chowdhury R, Furukawa Y, Mikami T, Sugahara K, Fawcett JW (2008) Heparan sulphate proteoglycans in glia and in the normal and injured CNS: expression of sulphotransferases and changes in sulphation. Eur J Neurosci 27:593–604

    Article  PubMed  Google Scholar 

  • Pyka M, Wetzel C, Aguado A, Geissler M, Hatt H, Faissner A (2011) Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. Eur J Neurosci 33:2187–2202

    Article  PubMed  Google Scholar 

  • Raman y Cajal (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London

    Google Scholar 

  • Rhodes KE, Fawcett JW (2004) Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 204:33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235–241

    Article  CAS  PubMed  Google Scholar 

  • Saigoh K, Izumikawa T, Koike T, Shimizu J, Kitagawa H, Kusunoki S (2011) Chondroitin beta-1,4-N-acetylgalactosaminyltransferase-1 missense mutations are associated with neuropathies. J Hum Genet 56:143–146

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, He Z, Silver J, Flanagan JG (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326:592–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 54:177–186

    Article  CAS  PubMed  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  • Smith-Thomas LC, Stevens J, Fok-Seang J, Faissner A, Rogers JH, Fawcett JW (1995) Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors. J Cell Sci 108:1307–1315

    CAS  PubMed  Google Scholar 

  • Soleman S, Filippov MA, Dityatev A, Fawcett JW (2013) Targeting the neural extracellular matrix in neurological disorders. Neuroscience 253:194–213

    Article  CAS  PubMed  Google Scholar 

  • Spatazza J, Lee HH, Di Nardo AA, Tibaldi L, Joliot A, Hensch TK, Prochiantz A (2013) Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep 3:1815–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugahara K, Kitagawa H (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 10:518–527

    Article  CAS  PubMed  Google Scholar 

  • Sugahara K, Mikami T (2007) Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 17:536–545

    Article  CAS  PubMed  Google Scholar 

  • Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13:612–620

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama S, Di Nardo AA, Aizawa S, Matsuo I, Volovitch M, Prochiantz A, Hensch TK (2008) Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134:508–520

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Yoshioka N, Higa Onaga S, Watanabe Y, Miyata S, Wada Y, Kudo C, Okada M, Ohko K, Oda K, Sato T, Yokoyama M, Matsushita N, Nakamura M, Okano H, Sakimura K, Kawano H, Kitagawa H, Igarashi M (2013) Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury. Nat Commun 4:2740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan CL, Kwok JC, Patani R, Ffrench-Constant C, Chandran S, Fawcett JW (2011) Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. J Neurosci 31:6289–6295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J (2004) Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci 24:6531–6539

    Article  CAS  PubMed  Google Scholar 

  • Tropea D, Van Wart A, Sur M (2009) Molecular mechanisms of experience-dependent plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci 364:341–355

    Article  PubMed  Google Scholar 

  • Uyama T, Kitagawa H, Sugahara K (2007) Biosynthesis of glycosaminoglycans and proteoglycans. In: Kamerling JP (ed) Comprehensive glycoscience, vol 3. Elsevier, Amsterdam, pp 79–104

    Chapter  Google Scholar 

  • Wang H, Katagiri Y, McCann TE, Unsworth E, Goldsmith P, Yu ZX, Tan F, Santiago L, Mills EM, Wang Y, Symes AJ, Geller HM (2008) Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci 121:3083–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single-cell responses in striate complex of kittens deprived of vision in one eye. J Neurophysiol 126:1003–1017

    Google Scholar 

  • Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57:276–289

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Inatani M, Matsumoto Y, Ogawa J, Irie F (2010) Roles of heparan sulfate in mammalian brain development current views based on the findings from Ext1 conditional knockout studies. Prog Mol Biol Transl Sci 93:133–152

    Article  CAS  PubMed  Google Scholar 

  • Yazaki-Sugiyama Y, Kang S, Câteau H, Fukai T, Hensch TK (2009) Bidirectional plasticity in fast-spiking GABA circuits by visual experience. Nature 462:218–221

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Muramatsu T, Murase A, Yuasa S, Uchimura K, Kadomatsu K (2006) N-Acetylglucosamine 6-O-sulfotransferase-1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury. Glycobiology 16:702–710

    Article  CAS  PubMed  Google Scholar 

  • Zhou XH, Brakebusch C, Matthies H, Oohashi T, Hirsch E, Moser M, Krug M, Seidenbecher CI, Boeckers TM, Rauch U, Buettner R, Gundelfinger ED, Fässler R (2001) Neurocan is dispensable for brain development. Mol Cell Biol 21:5970–5978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (C) #24590132 (to T. M.) and for Scientific Research on Innovative Areas #23110003 (to H. K.) and by the Supported Program for the Strategic Research Foundation at Private Universities, 2012–2016 (to H. K.), from Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kitagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Mikami, T., Kitagawa, H. (2015). Glycan Structure and Neural Plasticity. In: Suzuki, T., Ohtsubo, K., Taniguchi, N. (eds) Sugar Chains. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55381-6_7

Download citation

Publish with us

Policies and ethics