Skip to main content

α1,6-Fucosyltransferase Knockout Mice and Schizophrenia-Like Phenotype

  • Chapter
  • First Online:
Sugar Chains

Abstract

The glycan core fucose is catalyzed by α1,6-fucosyltransferase (Fut8), which transfers a fucose residue to the innermost GlcNAc residue via α1,6-linkage on N-linked glycans (N-glycans) in mammals. N-glycan is always attached to the nitrogen atom of an asparagine (Asn) side chain that is present in the Asn-X-Ser/Thr motif on a protein, where X is any amino acid except proline. The α1,6-fucosylated (core-fucosylated) N-glycan is ubiquitously distributed in all tissues. Interestingly, the unique structure of the core-fucosylated hybrid, one of three major types of N-glycans, is highly expressed in brain tissues, and the expression pattern of N-glycans is altered during brain development. The Fut8-deficient (Fut8−/−) mice exhibit emphysema-like changes in the lungs and severe growth retardation due to dysregulation of the TGF-β1 receptor and the EGF receptor, respectively. To understand the role of core fucosylation in brain tissue, a combination of neurological and behavioral tests for Fut8−/− mice was examined. Fut8−/− mice displayed multiple behavioral abnormalities, such as increased locomotion, decrease in working memory, strenuous hopping behavior, and prepulse inhibition deficiency, which were consistent with a schizophrenia-like phenotype. Here, we summarized the knowledge of the biological functions of core fucosylation, especially its role in brain and neural cells, and discussed possible underlying molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreasson K, Worley PF (1995) Induction of beta-A activin expression by synaptic activity and during neocortical development. Neuroscience 69(3):781–796

    Article  CAS  PubMed  Google Scholar 

  • Bao YL, Tsuchida K, Liu B, Kurisaki A, Matsuzaki T, Sugino H (2005) Synergistic activity of activin A and basic fibroblast growth factor on tyrosine hydroxylase expression through Smad3 and ERK1/ERK2 MAPK signaling pathways. J Endocrinol 184(3):493–504

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156(2–3):234–258

    Article  CAS  Google Scholar 

  • Carlson JN, Fitzgerald LW, Keller RW Jr, Glick SD (1991) Side and region dependent changes in dopamine activation with various durations of restraint stress. Brain Res 550(2):313–318

    Article  CAS  PubMed  Google Scholar 

  • Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H, Taylor A, Arseneault L, Williams B, Braithwaite A, Poulton R, Craig IW (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry 57(10):1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Dow AL, Russell DS, Duman RS (2005) Regulation of activin mRNA and Smad2 phosphorylation by antidepressant treatment in the rat brain: effects in behavioral models. J Neurosci 25(20):4908–4916

    Article  CAS  PubMed  Google Scholar 

  • Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, Kreidberg JA, Anton ES (2000) Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Ferrara C, Grau S, Jager C, Sondermann P, Brunker P, Waldhauer I, Hennig M, Ruf A, Rufer AC, Stihle M, Umana P, Benz J (2011) Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A 108(31):12669–12674. doi:10.1073/pnas.1108455108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanders KC, Ludecke G, Engels S, Cissel DS, Roberts AB, Kondaiah P, Lafyatis R, Sporn MB, Unsicker K (1991) Localization and actions of transforming growth factor-beta s in the embryonic nervous system. Development 113(1):183–191

    CAS  PubMed  Google Scholar 

  • Frantseva MV, Fitzgerald PB, Chen R, Moller B, Daigle M, Daskalakis ZJ (2008) Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb Cortex 18(5):990–996. doi:10.1093/cercor/bhm151

    Article  PubMed  Google Scholar 

  • Freedman R (2003) Schizophrenia. N Engl J Med 349(18):1738–1749

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Hashimoto H, Okayasu N, Kameyama A, Onogi H, Nakagawasai O, Nakazawa T, Kurosawa T, Hao Y, Isaji T, Tadano T, Narimatsu H, Taniguchi N, Gu J (2011) Alpha1,6-fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype: importance of the balance between the dopamine and serotonin systems. J Biol Chem 286(21):18434–18443

    Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283(5400):397–401

    Article  CAS  PubMed  Google Scholar 

  • Garnock-Jones KP, Keating GM (2009) Atomoxetine: a review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr Drugs 11(3):203–226

    Article  PubMed  Google Scholar 

  • Gu W, Fukuda T, Isaji T, Hashimoto H, Wang Y, Gu J (2011) Alpha1,6-Fucosylation regulates neurite formation via the activin/phospho-Smad2 pathway in PC12 cells: the implicated dual effects of Fut8 for TGF-beta/activin-mediated signaling. FASEB J 27(10):3947–3958. doi:10.1096/fj.12-225805

  • Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, Sakaue M, Miyazaki J, Niwa H, Tashiro F, Yamamoto K, Koga K, Tomimoto S, Kunugi A, Suetake S, Baba A (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98(23):13355–13360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heupel K, Sargsyan V, Plomp JJ, Rickmann M, Varoqueaux F, Zhang W, Krieglstein K (2008) Loss of transforming growth factor-beta 2 leads to impairment of central synapse function. Neural Dev 3:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyman SE (2000) The genetics of mental illness: implications for practice. Bull World Health Organ 78(4):455–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ioffe E, Stanley P (1994) Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci U S A 91(2):728–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeken J, Schachter H, Carchon H, De Cock P, Coddeville B, Spik G (1994) Carbohydrate deficient glycoprotein syndrome type II: a deficiency in Golgi localised N-acetyl-glucosaminyltransferase II. Arch Dis Child 71(2):123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapur S, Barsoum SC, Seeman P (2000) Dopamine D(2) receptor blockade by haloperidol. (3)H-raclopride reveals much higher occupancy than EEDQ. Neuropsychopharmacology 23(5):595–598

    Article  CAS  PubMed  Google Scholar 

  • Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific Rep 1. doi:10.1038/srep00090

  • Kopelowicz A, Liberman RP, Zarate R (2006) Recent advances in social skills training for schizophrenia. Schizophr Bull 32(Suppl 1):S12–S23

    Article  PubMed  PubMed Central  Google Scholar 

  • Krieglstein K, Zheng F, Unsicker K, Alzheimer C (2011) More than being protective: functional roles for TGF-beta/activin signaling pathways at central synapses. Trends Neurosci 34(8):421–429

    Article  CAS  PubMed  Google Scholar 

  • Kullmann DM, Lamsa KP (2007) Long-term synaptic plasticity in hippocampal interneurons. Nat Rev Neurosci 8(9):687–699. doi:10.1038/nrn2207

    Article  CAS  PubMed  Google Scholar 

  • Kumari V, Fannon D, Geyer MA, Premkumar P, Antonova E, Simmons A, Kuipers E (2008) Cortical grey matter volume and sensorimotor gating in schizophrenia. Cortex 44(9):1206–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis DA, Sweet RA (2009) Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. J Clin Invest 119(4):706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Ishihara K, Yokota T, Nakagawa T, Koyama N, Jin J, Mizuno-Horikawa Y, Wang X, Miyoshi E, Taniguchi N, Kondo A (2008) Reduced alpha4beta1 integrin/VCAM-1 interactions lead to impaired pre-B cell repopulation in alpha 1,6-fucosyltransferase deficient mice. Glycobiology 18(1):114–124. doi:10.1093/glycob/cwm107

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu Q, Pang Y, Jin J, Wang H, Cao H, Li Z, Wang X, Ma B, Chi Y, Wang R, Kondo A, Gu J, Taniguchi N (2012) Core fucosylation of mu heavy chains regulates assembly and intracellular signaling of precursor B cell receptors. J Biol Chem 287(4):2500–2508. doi:10.1074/jbc.M111.303123

    Article  CAS  PubMed  Google Scholar 

  • Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13(3):169–182. doi:10.1038/nrn3192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lubke T, Marquardt T, von Figura K, Korner C (1999) A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the golgi. J Biol Chem 274(37):25986–25989

    Article  CAS  PubMed  Google Scholar 

  • Lubke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Korner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28(1):73–76

    CAS  PubMed  Google Scholar 

  • Ludewig K, Geyer MA, Vollenweider FX (2003) Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry 54(2):121–128

    Article  PubMed  Google Scholar 

  • Marquardt T, Brune T, Luhn K, Zimmer KP, Korner C, Fabritz L, van der Werft N, Vormoor J, Freeze HH, Louwen F, Biermann B, Harms E, von Figura K, Vestweber D, Koch HG (1999a) Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J Pediatr 134(6):681–688

    Article  CAS  PubMed  Google Scholar 

  • Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E, Vestweber D (1999b) Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94(12):3976–3985

    CAS  PubMed  Google Scholar 

  • Mizushima T, Yagi H, Takemoto E, Shibata-Koyama M, Isoda Y, Iida S, Masuda K, Satoh M, Kato K (2011) Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells 16(11):1071–1080. doi:10.1111/j.1365-2443.2011.01552.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller TM, Haroutunian V, Meador-Woodruff JH (2014) N-Glycosylation of GABAA receptor subunits is altered in Schizophrenia. Neuropsychopharmacology 39(3):528–537. doi:10.1038/npp.2013.190

    Article  CAS  PubMed  Google Scholar 

  • Nakakita S, Natsuka S, Okamoto J, Ikenaka K, Hase S (2005) Alteration of brain type N-glycans in neurological mutant mouse brain. J Biochem 138(3):277–283

    Article  CAS  PubMed  Google Scholar 

  • Nicodemus KK, Marenco S, Batten AJ, Vakkalanka R, Egan MF, Straub RE, Weinberger DR (2008) Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Mol Psychiatry 13(9):873–877

    Article  CAS  PubMed  Google Scholar 

  • Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A, Yokoi H, Nakamura K, Shitara K (2004) Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Clinical Cancer Res 10(18 Pt 1):6248–6255. doi:10.1158/1078-0432.CCR-04-0850

    Article  CAS  Google Scholar 

  • Piskulic D, Olver JS, Norman TR, Maruff P (2007) Behavioural studies of spatial working memory dysfunction in schizophrenia: a quantitative literature review. Psychiatry Res 150(2):111–121

    Article  PubMed  Google Scholar 

  • Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H, Mori S, Moran TH, Ross CA (2008) Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 13(2):173–186, 115

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52(1):139–153

    Article  CAS  PubMed  Google Scholar 

  • Sanderson TM, Cotel MC, O’Neill MJ, Tricklebank MD, Collingridge GL, Sher E (2012) Alterations in hippocampal excitability, synaptic transmission and synaptic plasticity in a neurodevelopmental model of schizophrenia. Neuropharmacology 62(3):1349–1358. doi:10.1016/j.neuropharm.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Nakata K, Kato Y, Shima M, Ishii N, Koji T, Taketa K, Endo Y, Nagataki S (1993) Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N Engl J Med 328(25):1802–1806. doi:10.1056/NEJM199306243282502

    Article  CAS  PubMed  Google Scholar 

  • Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265(5180):1875–1878

    Article  CAS  PubMed  Google Scholar 

  • Savanthrapadian S, Wolff AR, Logan BJ, Eckert MJ, Bilkey DK, Abraham WC (2013) Enhanced hippocampal neuronal excitability and LTP persistence associated with reduced behavioral flexibility in the maternal immune activation model of schizophrenia. Hippocampus 23(12):1395–1409. doi:10.1002/hipo.22193

    Article  PubMed  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  CAS  PubMed  Google Scholar 

  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740

    Article  CAS  PubMed  Google Scholar 

  • Shimizu H, Ochiai K, Ikenaka K, Mikoshiba K, Hase S (1993) Structures of N-linked sugar chains expressed mainly in mouse brain. J Biochem 114(3):334–338

    Article  CAS  PubMed  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473

    Article  CAS  PubMed  Google Scholar 

  • Stanta JL, Saldova R, Struwe WB, Byrne JC, Leweke FM, Rothermund M, Rahmoune H, Levin Y, Guest PC, Bahn S, Rudd PM (2010) Identification of N-glycosylation changes in the CSF and serum in patients with schizophrenia. J Proteome Res 9(9):4476–4489. doi:10.1021/pr1002356

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E, Niwa R, Saji S, Muta M, Hirose M, Iida S, Shiotsu Y, Satoh M, Shitara K, Kondo M, Toi M (2007) A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients. Clinical Cancer Research 13(6):1875–1882. doi:10.1158/1078-0432.CCR-06-1335

    Article  CAS  PubMed  Google Scholar 

  • ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29(5):265–273

    Article  PubMed  Google Scholar 

  • Tucholski J, Simmons MS, Pinner AL, Haroutunian V, McCullumsmith RE, Meador-Woodruff JH (2013a) Abnormal N-linked glycosylation of cortical AMPA receptor subunits in schizophrenia. Schizophr Res 146(1–3):177–183. doi:10.1016/j.schres.2013.01.031

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucholski J, Simmons MS, Pinner AL, McMillan LD, Haroutunian V, Meador-Woodruff JH (2013b) N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia. Neuroreport 24(12):688–691. doi:10.1097/WNR.0b013e328363bd8a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44(3):613–625

    Article  CAS  PubMed  Google Scholar 

  • Uozumi N, Yanagidani S, Miyoshi E, Ihara Y, Sakuma T, Gao CX, Teshima T, Fujii S, Shiba T, Taniguchi N (1996) Purification and cDNA cloning of porcine brain GDP-L-Fuc: N-acetyl-beta-D-glucosaminide alpha1-->6fucosyltransferase. J Biol Chem 271(44):27810–27817

    Google Scholar 

  • van den Buuse M, Wischhof L, Lee RX, Martin S, Karl T (2009) Neuregulin 1 hypomorphic mutant mice: enhanced baseline locomotor activity but normal psychotropic drug-induced hyperlocomotion and prepulse inhibition regulation. Int J Neuropsychopharmacol 12(10):1383–1393

    Article  PubMed  Google Scholar 

  • Wang Y, Tan J, Sutton-Smith M, Ditto D, Panico M, Campbell RM, Varki NM, Long JM, Jaeken J, Levinson SR, Wynshaw-Boris A, Morris HR, Le D, Dell A, Schachter H, Marth JD (2001) Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis. Glycobiology 11(12):1051–1070

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, Mizuno-Horikawa Y, Nakano M, Asahi M, Takahashi M, Uozumi N, Ihara S, Lee SH, Ikeda Y, Yamaguchi Y, Aze Y, Tomiyama Y, Fujii J, Suzuki K, Kondo A, Shapiro SD, Lopez-Otin C, Kuwaki T, Okabe M, Honke K, Taniguchi N (2005) Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci U S A 102(44):15791–15796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N (2006) Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem 281(5):2572–2577

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Fukuda T, Li W, Gao CX, Kondo A, Matsumoto A, Miyoshi E, Taniguchi N, Gu J (2009) Requirement of Fut8 for the expression of vascular endothelial growth factor receptor-2: a new mechanism for the emphysema-like changes observed in Fut8-deficient mice. J Biochem 145(5):643–651

    Article  CAS  PubMed  Google Scholar 

  • Ye Z, Marth JD (2004) N-glycan branching requirement in neuronal and postnatal viability. Glycobiology 14(6):547–558

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Itoh S, Wang X, Isaji T, Miyoshi E, Kariya Y, Miyazaki K, Kawasaki N, Taniguchi N, Gu J (2006) Deletion of core fucosylation on alpha3beta1 integrin down-regulates its functions. J Biol Chem 281(50):38343–38350

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Adelsberger H, Muller MR, Fritschy JM, Werner S, Alzheimer C (2009) Activin tunes GABAergic neurotransmission and modulates anxiety-like behavior. Mol Psychiatry 14(3):332–346

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Gu, W., Fukuda, T., Gu, J. (2015). α1,6-Fucosyltransferase Knockout Mice and Schizophrenia-Like Phenotype. In: Suzuki, T., Ohtsubo, K., Taniguchi, N. (eds) Sugar Chains. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55381-6_17

Download citation

Publish with us

Policies and ethics