Skip to main content

Roles of Glycans in Immune Evasion from NK Immunity

  • Chapter
  • First Online:
Sugar Chains

Abstract

We innately have an ability to reject tumors, thereby limiting cancer progression and metastasis. The major effector lymphocytes in tumor rejection are natural killer (NK) cells. NK cells kill target cancer cells by two different rejection mechanisms, NK receptor-dependent killing and tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated killing. In spite of these tumor rejection systems, cancer cells make survival in host, facilitating the metastatic spread to other organs. The metastatic spread is still the major cause of cancer deaths. It has been revealed that some cancer cells acquire an ability to evade tumor rejection responses by NK cells to survive longer in host, thereby increasing the chance to metastasize. Several immune evasion strategies have been well documented. Recently, the immune evasion mechanisms from NK immunity using cell-surface glycans have been identified. The cancer cells use the certain types of cell-surface glycans to evade NK immunity in the following three ways: reducing NK activating receptor-mediated signaling, enhancing NK inhibitory receptor-mediated signaling, and modulating TRAIL-mediated killing. In this chapter, we will illustrate those evasion mechanisms in which cell-surface glycans play a central role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mucin-type O-glycan is a general term for the oligosaccharides which are initially found in cell-surface and secreted mucins. Those oligosaccharides contain the linkage of N-acetylgalactosamine (GalNAc) to serine or threonine residues. Mucin-type O-glycans are present on other cell-surface glycoproteins such as CD43 and CD34. In this chapter, we focus on the mucin-type O-glycans among O-glycans.

References

  • Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180:7249–7258

    Article  CAS  PubMed  Google Scholar 

  • Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O’Reilly RJ, Dupont B et al (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171:6891–6899

    Article  CAS  PubMed  Google Scholar 

  • Falschlehner C, Schaefer U, Walczak H (2009) Following TRAIL’s path in the immune system. Immunology 127:145–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuertes MB, Girart MV, Molinero LL, Domaica CI, Rossi LE, Barrio MM et al (2008) Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity. J Immunol 180:4606–4614

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M (1996) Possible roles of tumor-associated carbohydrate antigens. Cancer Res 56:2237–2244

    CAS  PubMed  Google Scholar 

  • Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542

    Article  CAS  PubMed  Google Scholar 

  • Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  CAS  PubMed  Google Scholar 

  • Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N et al (2008) NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagisawa S, Ohyama C, Takahashi T, Endoh M, Moriya T, Nakayama J et al (2005) Expression of core 2 beta1,6-N-acetylglucosaminyltransferase facilitates prostate cancer progression. Glycobiology 15:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama S, Kyan A, Yamamoto H, Okamoto A, Sugiyama N, Suzuki Y et al (2010) Core 2 N-acetylglucosaminyltransferase expression induces aggressive potential of testicular germ cell tumor. Int J Cancer 127:1052–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudak JE, Canham SM, Bertozzi CR (2014) Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol 10:69–75

    Article  CAS  PubMed  Google Scholar 

  • Joncker NT, Raulet DH (2008) Regulation of NK cell responsiveness to achieve self-tolerance and maximal responses to diseased target cells. Immunol Rev 224:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leivonen M, Nordling S, Lundin J, von Boguslawski K, Haglund C (2001) STn and prognosis in breast cancer. Oncology 61:299–305

    Article  CAS  PubMed  Google Scholar 

  • Levy EM, Roberti MP, Mordoh J (2011) Natural killer cells in human cancer: from biological functions to clinical applications. J Biomed Biotechnol 2011:676198

    Article  PubMed  PubMed Central  Google Scholar 

  • Machida E, Nakayama J, Amano J, Fukuda M (2001) Clinicopathological significance of core 2 beta1,6-N-acetylglucosaminyltransferase messenger RNA expressed in the pulmonary adenocarcinoma determined by in situ hybridization. Cancer Res 61:2226–2231

    CAS  PubMed  Google Scholar 

  • Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R et al (2011) Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest 121:3609–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi E, Moriwaki K, Nakagawa T (2008) Biological function of fucosylation in cancer biology. J Biochem 143:725–729

    Article  CAS  PubMed  Google Scholar 

  • Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A (2004) Different checkpoints in human NK-cell activation. Trends Immunol 25:670–676

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki K, Noda K, Furukawa Y, Ohshima K, Uchiyama A, Nakagawa T et al (2009) Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling. Gastroenterology 137:188–198, 98 e1-2

    Article  CAS  PubMed  Google Scholar 

  • Nausch N, Cerwenka A (2008) NKG2D ligands in tumor immunity. Oncogene 27:5944–5958

    Article  CAS  PubMed  Google Scholar 

  • Ogata S, Maimonis PJ, Itzkowitz SH (1992) Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res 52:4741–4746

    CAS  PubMed  Google Scholar 

  • Ohyama C, Smith PL, Angata K, Fukuda MN, Lowe JB, Fukuda M (1998) Molecular cloning and expression of GDP-D-mannose-4,6-dehydratase, a key enzyme for fucose metabolism defective in Lec13 cells. J Biol Chem 273:14582–14587

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Yoneyama MS, Hatakeyama S, Mori K, Yamamoto H, Koie T et al (2013) Core2 O-glycan-expressing prostate cancer cells are resistant to NK cell immunity. Mol Med Rep 7:359–364

    CAS  PubMed  Google Scholar 

  • Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE et al (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937

    Article  CAS  PubMed  Google Scholar 

  • Purdy AK, Campbell KS (2009) Natural killer cells and cancer: regulation by the killer cell Ig-like receptors (KIR). Cancer Biol Ther 8:2211–2220

    Article  PubMed  Google Scholar 

  • Rabinovich GA, Rubinstein N, Fainboim L (2002) Unlocking the secrets of galectins: a challenge at the frontier of glyco-immunology. J Leukoc Biol 71:741–752

    CAS  PubMed  Google Scholar 

  • Raulet DH, Gasser S, Gowen BG, Deng W, Jung H (2013) Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 31:413–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saegusa J, Hsu DK, Chen HY, Yu L, Fermin A, Fung MA et al (2009) Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. Am J Pathol 174:922–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan FX, Kumar R, Kriz R, Stahl M, Xu GY, Rouse J et al (1998) Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. J Biol Chem 273:8193–8202

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Sutoh M, Hatakeyama S, Mori K, Yamamoto H, Koie T et al (2012) MUC1 carrying core 2 O-glycans functions as a molecular shield against NK cell attack, promoting bladder tumor metastasis. Int J Oncol 40:1831–1838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi S (2013) Immunosuppressive functions of core2 O-glycans against NK immunity. Trends Glycosci Glycotechnol 25:117–123

    Article  CAS  Google Scholar 

  • Tsuboi S, Sutoh M, Hatakeyama S, Hiraoka N, Habuchi T, Horikawa Y et al (2011) A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans. EMBO J 30:3173–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboi S, Hatakeyama S, Ohyama C, Fukuda M (2012) Two opposing roles of O-glycans in tumor metastasis. Trends Mol Med 18:224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Rinsum J, Smets LA, Van Rooy H, Van den Eijnden DH (1986) Specific inhibition of human natural killer cell-mediated cytotoxicity by sialic acid and sialo-oligosaccharides. Int J Cancer 38:915–922

    Article  PubMed  Google Scholar 

  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  CAS  PubMed  Google Scholar 

  • Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K et al (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13:1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17

    Article  PubMed  Google Scholar 

  • Zafirova B, Mandaric S, Antulov R, Krmpotic A, Jonsson H, Yokoyama WM et al (2009) Altered NK cell development and enhanced NK cell-mediated resistance to mouse cytomegalovirus in NKG2D-deficient mice. Immunity 31:270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Tsuboi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tsuboi, S. (2015). Roles of Glycans in Immune Evasion from NK Immunity. In: Suzuki, T., Ohtsubo, K., Taniguchi, N. (eds) Sugar Chains. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55381-6_11

Download citation

Publish with us

Policies and ethics