Skip to main content

Double Chooz Data

  • Chapter
  • First Online:
Double Chooz and Reactor Neutrino Oscillation

Part of the book series: Springer Theses ((Springer Theses))

  • 401 Accesses

Abstract

The Double Chooz experiment started to take data, with its far detector only, on 13th of April of 2011. This chapter is dedicated to the analysis of these data, which span through 333 days of data taking. The estimation of neutrino events (taking into account the two Chooz nuclear reactors thermal power history), the detector simulation, the event information reconstruction method (mainly energy and position), the neutrino event selection and its efficiency, and the background estimation and measurements, are described here. Moreover, a background dominated sample, taken when the reactors were off, is also discussed.

Oh, there’s my missing neutrino.

Sheldon Cooper

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The name for this MC-based error propagation technique is taken from the MiniBooNE experiment.

  2. 2.

    Although the upper OV has been installed recently, it was not operational during the data set used here.

  3. 3.

    This is five times the neutron capture time, by Hydrogen in the GC.

  4. 4.

    During the preparation of this book, a more detailed analysis, concerning this method, was published [24].

References

  1. Y. Abe et al. (Double Chooz Collaboration), Reactor \({\overline{\nu {}}}_{e}\) disappearance in the Double Chooz experiment. Phys. Rev. D 86, 052008 (2012)

    Google Scholar 

  2. Y. Abe et al. (Double Chooz Collaboration), First measurement of \(\theta _{13}\) from delayed neutron capture on hydrogen in the Double Chooz experiment. Phys. Lett. B 723(13), 66–70 (2013)

    Google Scholar 

  3. E. Tournu et al., EdF Technical Note (2001)

    Google Scholar 

  4. V.I. Kopeikin, L.A. Mikaelyan, V.V. Sinev, Reactor as a source of antineutrinos: thermal fission energy. Phys. At. Nucl. 67(10), 1892–1899 (2004)

    Article  Google Scholar 

  5. Méplan et al., MURE: MCNP Utility for Reactor Evolution—description of the methods, first applications and results, in Proceedings of the ENC 2005 (CD-Rom) (European Nuclear Society, Versailles, 2005), pp. 1–7. PACS LPSC05142

    Google Scholar 

  6. G. Marleau, R. Roy, A. Hebert, DRAGON: a collision probability transport code for cell and supercell calculations. Report IGE-157, Institut de génie nucléaire, École Polytechnique de Montréal, Montréal, Québec (1994), http://www.polymtl.ca/nucleaire/DRAGON/en/

  7. C.L. Jones et al., Reactor simulation for antineutrino experiments using DRAGON and MURE. Phys. Rev. D 86, 012001 (2012)

    Article  ADS  Google Scholar 

  8. Y. Nakahara, K. Suyama, T. Suzaki, Technical development on burn-up credit for spent LWR fuel. Technical Report JAERI-Tech 2000-071, Japan Atomic Energy Research Institute (JAERI), 2000. ORNL/TR-2001/01 English Translation, Oak Ridge National Laboratory, January 2002

    Google Scholar 

  9. A. Onillon, C. Jones, Reactor and antineutrino spectrum calculation for the Double Chooz first phase results, in The XXV International Conference on Neutrino Physics and Astrophysics (Neutrino 2012), June 2012. Poster ID.146-2 - http://neu2012.kek.jp/

  10. Y. Declais et al., Study of reactor antineutrino interaction with proton at Bugey nuclear power plant. Phys. Lett. B 338(2–3), 383–389 (1994)

    Article  ADS  Google Scholar 

  11. S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003)

    Article  ADS  Google Scholar 

  12. S.M. Seltzer, M.J. Berger, Procedure for calculating the radiation stopping power for electrons. Int. J. Appl. Radiat. Isot. 33(11), 1219–1226 (1982)

    Article  Google Scholar 

  13. V. McLane et al., ENDF/B-VI summary documentation. Technical Report BNL-NCS-17541, Nuclear Data Service of International Atomic Energy Agency, 4th edn., suppl. I (1996)

    Google Scholar 

  14. J.B. Birks, Scintillations from organic crystals: specific fluorescence and relative response to different radiations. Proc. Phys. Soc. Sect. A 64(10), 874 (1951)

    Article  ADS  Google Scholar 

  15. J. Haser, Spill in/out technical note. Double Chooz private document DocDB 4127–v3 (2012)

    Google Scholar 

  16. K. Terao et al., Neutrino selection using neutron caputre on hydrogen. Double Chooz private document DocDB 3667-v2, November 2012

    Google Scholar 

  17. K. Terao et al., Spill in/out and global normalisation studies for n-H analysis. Double Chooz private document DocDB 4156-v13, October 2012

    Google Scholar 

  18. S. Abe et al. (KamLAND Collaboration), Production of radioactive isotopes through cosmic muon spallation in KamLAND. Phys. Rev. C 81, 025807 (2010)

    Google Scholar 

  19. D.R. Tilley et al., Energy levels of light nuclei. Nucl. Phys. A 745(34), 155–362 (2004)

    Article  ADS  Google Scholar 

  20. V.A. Kudryavtsev, Muon simulation codes MUSIC and MUSUN for underground physics. Comput. Phys. Commun. 180(3), 339–346 (2009)

    Article  ADS  MATH  Google Scholar 

  21. C.N. Maesano, \(^9\) Li Production from Stopped Muons in the Double Chooz Detector. PhD thesis, University of California—Davis (2012)

    Google Scholar 

  22. K. Nakajima, Report of Cluster Events and \(^{214}\)Bi-Po Increase. Double Chooz private document DocDB 4104-v2, June 2012

    Google Scholar 

  23. P. Novella, Gd-H combined reactor rate modulation (RRM) analysis. Double Chooz private document DocDB 4920-v6, June 2013

    Google Scholar 

  24. Y. Abe et al. (Double Chooz Collaboration), Background-independent measurement of \(\theta _{13}\) in Double Chooz. Phys. Lett. B 735, 51–56 (2014)

    Google Scholar 

  25. P. Adamson et al. (MINOS Collaboration), Measurement of the neutrino mass splitting and flavor mixing by MINOS. Phys. Rev. Lett. 106, 181801 (2011). Copyright (2014) by the American Physical Society

    Google Scholar 

  26. Y. Abe et al. (Double Chooz Collaboration), Direct measurement of backgrounds using reactor-off data in Double Chooz. Phys. Rev. D 87, 011102 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Junqueira de Castro Bezerra .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Junqueira de Castro Bezerra, T. (2015). Double Chooz Data. In: Double Chooz and Reactor Neutrino Oscillation. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55375-5_4

Download citation

Publish with us

Policies and ethics