Skip to main content

Endohedral Metallofullerenes: From Chemical Reactivity to Material Performance

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Endohedral metallofullerenes (EMFs) are hybrids of fullerenes and metal atoms or metal-containing clusters. The curved π-electron systems of the fullerene cages in EMFs are influenced strongly by the encaged metal species. The π-electron systems of EMFs, which stem from the electron transfer from the encaged metallic species, differ entirely from those of empty fullerenes. Accordingly, EMFs exhibit unique chemical reactivities and electronic properties that empty fullerenes never have. This chapter exclusively addresses the most recent achievements of our EMF research, ranging from basic chemical reactivity to material performance. This chapter includes four major parts. The first deals with the fascinating chemical reactivity of EMFs encountered very recently in our lab. The second part is devoted to EMF-based donor–acceptor conjugates, in which EMFs can display electron acceptor characters as well as electron donor characters, corresponding to the counterparts. In the third part, carrier transport properties of EMFs are summarized. The fourth part briefly describes the preparation and property of surface-grafted EMFs. Throughout, we hope that this chapter will stimulate readers to familiarize themselves with these fascinating molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akasaka T, Nagase S (eds) (2002) Endofullerenes: a new family of carbon clusters. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  2. Chaur MN, Melin F, Ortiz AL, Echegoyen L (2009) Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 48:7514–7538

    Article  CAS  Google Scholar 

  3. Akasaka T, Wudl F, Nagase S (eds) (2010) Chemistry of nanocarbons. Wiley, Chichester

    Google Scholar 

  4. Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43:92–102

    Article  CAS  Google Scholar 

  5. Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41:7723–7760

    Article  Google Scholar 

  6. Popov A, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

    Article  CAS  Google Scholar 

  7. Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K, Nagase S (2005) Structural determination of metallofullerene Sc3C82 revisited: a surprising finding. J Am Chem Soc 127:12500–12501

    Article  CAS  Google Scholar 

  8. Yamada M, Kurihara H, Suzuki M, Guo JD, Waelchli M, Olmstead MM, Balch AL, Nagase S, Maeda Y, Hasegawa T, Lu X, Akasaka T (2014) Sc2@C66 revisited: an endohedral fullerene with scandium ions nestled within two unsaturated linear triquinanes. J Am Chem Soc 136:7611–7614

    Article  CAS  Google Scholar 

  9. Yamada M, Akasaka T, Nagase S (2011) New vistas in endohedral metallofullerenes. In: D’Souza F, Kadish KM (eds) Handbook of carbon nano materials, vol 1. World Scientific, Singapore, pp 145–184

    Chapter  Google Scholar 

  10. Yamada M, Lu X, Feng L, Sato S, Takano Y, Nagase S, Akasaka T (2013) Fundamental and applied aspects of endohedral metallofullerenes as promising carbon nanomaterials. In: Torres T, Bottari G (eds) Organic nanomaterials. Wiley, New Jersey, pp 241–258

    Chapter  Google Scholar 

  11. Lu X, Akasaka T, Nagase S (2011) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47:5942–5957

    Article  CAS  Google Scholar 

  12. Akasaka T, Lu X (2012) Structural and electronic properties of endohedral metallofullerenes. Chem Rec 12:256–269

    Article  CAS  Google Scholar 

  13. Hofmann M, Schaefer HF III (1999) The [C6H10]•+ hypersurface: the parent radical cation Diels–Alder reaction. J Am Chem Soc 121:6719–6729

    Article  CAS  Google Scholar 

  14. Haberl U, Wiest O, Steckhan E (1999) Ab initio studies of the radical cation Diels–Alder reaction. J Am Chem Soc 121:6730–6736

    Article  CAS  Google Scholar 

  15. Hofmann M, Schaefer HF III (1999) Pathways for the reaction of the butadiene radical cation, [C4H6]•+, with ethylene. J Phys Chem A 103:8895–8905

    Article  CAS  Google Scholar 

  16. Maeda Y, Miyashita J, Hasegawa T, Wakahara T, Tsuchiya T, Nakahodo T, Akasaka T, Mizorogi N, Kobayashi K, Nagase S, Kato T, Ban N, Nakajima H, Watanabe Y (2005) Reversible and regioselective reaction of La@C82 with cyclopentadiene. J Am Chem Soc 127:12190–12191

    Article  CAS  Google Scholar 

  17. Maeda Y, Sato S, Inada K, Nikawa H, Yamada M, Mizorogi N, Hasegawa T, Tsuchiya T, Akasaka T, Kato T, Slanina Z, Nagase S (2010) Regioselective exohedral functionalization of La@C82 and its 1,2,3,4,5-pentamethylcyclopentadiene and adamantylidene adducts. Chem Eur J 16:2193–2197

    Article  CAS  Google Scholar 

  18. Sato S, Maeda Y, Guo JD, Yamada M, Mizorogi N, Nagase S, Akasaka T (2013) Mechanistic study of the Diels–Alder reaction of paramagnetic endohedral metallofullerene: reaction of La@C82 with 1,2,3,4,5-pentamethylcyclopentadiene. J Am Chem Soc 135:5582–5587

    Article  CAS  Google Scholar 

  19. Filippone S, Maroto EE, Martín-Domenech Á, Suarez M, Martín N (2009) An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat Chem 1:578–582

    Google Scholar 

  20. Wakahara T, Nikawa H, Kikuchi T, Nakahodo T, Rahman GMA, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Yamamoto K, Mizorogi N, Slanina Z, Nagase S (2006) La@C72 having a non-IPR carbon cage. J Am Chem Soc 128:14228–14229

    Article  CAS  Google Scholar 

  21. Sawai K, Takano Y, Izquierdo M, Filippone S, Martín N, Slanina Z, Mizorogi N, Waelchli M, Tsuchiya T, Akasaka T, Nagase S (2011) Enantioselective synthesis of endohedral metallofullerenes. J Am Chem Soc 133:17746–17752

    Article  CAS  Google Scholar 

  22. Seyferth D, Annarelli DC (1975) Generation of dimethylsilylene under mild conditions by the thermolysis of hexamethylsilirane. J Am Chem Soc 97:7162–7163

    Article  CAS  Google Scholar 

  23. Boudjouk P, Black E, Kumarathasan R (1991) Synthesis of 1,1-di-tert-butylsilirane, the first silirane with no substituents on the ring carbons. Organometallics 10:2095–2096

    Article  CAS  Google Scholar 

  24. Sato K, Kako M, Suzuki M, Mizorogi N, Tsuchiya T, Olmstead MM, Balch AL, Akasaka T, Nagase S (2012) Synthesis of silylene-bridged endohedral metallofullerene Lu3N@I h -C80. J Am Chem Soc 134:16033–16039

    Article  CAS  Google Scholar 

  25. Komatsu K, Murata M, Murata T (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307:238–240

    Article  CAS  Google Scholar 

  26. Kurotobi K, Murata T (2011) A single molecule of water encapsulated in fullerene C60. Science 333:613–616

    Article  CAS  Google Scholar 

  27. Morinaka Y, Sato S, Wakamiya A, Nikawa H, Mizorogi N, Tanabe F, Murata M, Komatsu K, Furukawa K, Kato T, Nagase S, Akasaka T, Murata Y (2013) X-ray observation of a helium atom and placing a nitrogen atom inside He@C60 and He@C70. Nat Commun 4:1554

    Google Scholar 

  28. Qian W, Chuang SC, Amador RB, Jarrosson T, Sander M, Pieniazek S, Khan SI, Rubin Y (2003) Synthesis of stable derivatives of C62: the first nonclassical fullerene incorporating a four-membered ring. J Am Chem Soc 125:2066–2067

    Article  CAS  Google Scholar 

  29. Kurihara H, Iiduka Y, Rubin Y, Waelchli M, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S, Akasaka T (2012) Unexpected formation of a Sc3C2@C80 bisfulleroid derivative. J Am Chem Soc 134:4092–4095

    Article  CAS  Google Scholar 

  30. Imahori H, Sakata Y (1997) Donor-linked fullerenes: photoinduced electron transfer and its potential application. Adv Mater 9:537–546

    Article  CAS  Google Scholar 

  31. Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48

    Article  CAS  Google Scholar 

  32. Imahori H, Sakata Y (1999) Fullerenes as novel acceptors in photosynthetic electron transfer. Eur J Org Chem 1999:2445–2457

    Article  Google Scholar 

  33. Guldi DM (2000) Fullerenes: three dimensional electron acceptor materials. Chem Commun 321–327

    Google Scholar 

  34. Echegoyen L, Echegoyen LE (1998) Electrochemistry of fullerenes and their derivatives. Acc Chem Res 31:593–601

    Article  CAS  Google Scholar 

  35. Rudolf M, Wolfrum S, Guldi DM, Feng L, Tsuchiya T, Akasaka T, Echegoyen L (2012) Endohedral metallofullerenes–filled fullerene derivatives towards multifunctional reaction center mimics. Chem Eur J 18:5136–5148

    Google Scholar 

  36. Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Van Keuren E, Holloway BC, Drees M (2009) Endohedral fullerenes for organic photovoltaic devices. Nat Mater 8:208–212

    Article  CAS  Google Scholar 

  37. Ross RB, Cardona CM, Swain FB, Guldi DM, Sankaranarayanan SG, Van Keuren E, Holloway BC, Drees M (2009) Tuning conversion efficiency in metallo endohedral fullerene-based organic photovoltaic devices. Adv Funct Mater 19:2332–2337

    Article  CAS  Google Scholar 

  38. Fujitsuka M, Watanabe A, Ito O, Yamamoto K, Funasaka H (1997) Laser flash photolysis study on photochemical generation of radical cations of fullerenes C60, C70, and C76. J Phys Chem A 101:7960–7964

    Article  CAS  Google Scholar 

  39. Reed CA, Kim KC, Bolskar RD, Mueller LJ (2000) Taming superacids: stabilization of the fullerene cations HC60 + and C60 •+. Science 289:101–104

    Article  CAS  Google Scholar 

  40. Fukuzumi S, Mori H, Imahori H, Suenobu T, Araki Y, Ito O, Kadish KM (2001) Scandium ion-promoted photoinduced electron-transfer oxidation of fullerenes and derivatives by p-chloranil and p-benzoquinone. J Am Chem Soc 123:12458–12465

    Article  CAS  Google Scholar 

  41. Ohkubo K, Ortiz J, Martín-Gomis L, Fernández-Lázaro F, Sastre-Santos Á, Fukuzumi S (2007) Fullerene acting as an electron donor in a donor–acceptor dyad to attain the long-lived charge-separated state by complexation with scandium ion. Chem Commun 589–591

    Google Scholar 

  42. Feng L, Rudolf M, Wolfrum S, Troeger A, Slanina Z, Akasaka T, Nagase S, Martín N, Ameri T, Brabec CJ, Guldi DM (2012) A paradigmatic change: linking fullerenes to electron acceptors. J Am Chem Soc 134:12190–12197

    Article  CAS  Google Scholar 

  43. Rudolf M, Feng L, Slanina Z, Akasaka T, Nagase S, Guldi DM (2013) A metallofullerene electron donor that powers an efficient spin flip in a linear electron donor–acceptor conjugate. J Am Chem Soc 135:11165–11174

    Article  CAS  Google Scholar 

  44. Takano Y, Herranz MÁ, Martín N, Radhakrishnan SG, Guldi DM, Tsuchiya T, Nagase S, Akasaka T (2010) Donor–acceptor conjugates of lanthanum endohedral metallofullerene and π–extended TTF. J Am Chem Soc 132:8048–8055

    Google Scholar 

  45. Pinzón JR, Cardona CM, Herranz MÁ, Plonska-Brzezinska ME, Palkar A, Athans AJ, Martín N, Rodriguez-Fortea A, Poblet JM, Bottari G, Torres T, Gayathri SS, Guldi DM, Echegoyen L (2009) Metal nitride cluster fullerene M3N@C80 (M = Y, Sc) based dyads: synthesis, and electrochemical, theoretical and photophysical studies. Chem Eur J 15:864–877

    Article  Google Scholar 

  46. Guldi DM, Feng L, Radhakrishnan SG, Nikawa H, Yamada M, Mizorogi N, Tsuchiya T, Akasaka T, Nagase S, Herranz MÁ, Martín N (2010) A molecular Ce2@I h -C80 switch – unprecedented oxidative pathway in photoinduced charge transfer reactivity. J Am Chem Soc 132:9078–9086

    Article  CAS  Google Scholar 

  47. Feng L, Radhakrishnan SG, Mizorogi N, Slanina Z, Nikawa H, Tsuchiya T, Akasaka T, Nagase S, Martín N, Guldi DM (2011) Synthesis and charge-transfer chemistry of La2@I h -C80/Sc3N@I h -C80–zinc porphyrin conjugates: impact of endohedral cluster. J Am Chem Soc 133:7608–7618

    Article  CAS  Google Scholar 

  48. Takano Y, Obuchi S, Mizorogi N, García R, Herranz MÁ, Rudolf M, Wolfrum S, Guldi DM, Martín N, Nagase S, Akasaka T (2012) An endohedral metallofullerene as a pure electron donor: intramolecular electron transfer in donor–acceptor conjugates of La2@C80 and 11,11,12,12-tetracyano-9,10-anthra-p-quinodimethane (TCAQ). J Am Chem Soc 134:19401–19408

    Article  CAS  Google Scholar 

  49. Takano Y, Obuchi S, Mizorogi N, García R, Herranz MÁ, Rudolf M, Wolfrum S, Guldi DM, Martín N, Nagase S, Akasaka T (2012) Stabilizing ion and radical ion pair states in a paramagnetic endohedral metallofullerene/π-extended tetrathiafulvalene conjugate. J Am Chem Soc 134:16103–16106

    Article  CAS  Google Scholar 

  50. Feng L, Slanina Z, Sato S, Yoza K, Tsuchiya T, Mizorogi N, Akasaka T, Nagase S, Martín N, Guldi DM (2011) Covalently linked porphyrin–La@C82 hybrids: structural elucidation and investigation of intramolecular interactions. Angew Chem Int Ed 50:5909–5912

    Google Scholar 

  51. Mirkin CA, Caldwell WB (1996) Thin film, fullerene-based materials. Tetrahedron 52:5113–5130

    Article  CAS  Google Scholar 

  52. Martín N, Sánchez L, Herranz MÁ, Illescas B, Guldi DM (2007) Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials? Acc Chem Res 40:1015–1024

    Article  Google Scholar 

  53. Peet J, Heeger AJ, Bazan GC (2009) “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42:1700–1708

    Article  CAS  Google Scholar 

  54. Guldi DM, Illescas BM, Atienza CM, Wielopolski M, Martín N (2009) Fullerene for organic electronics. Chem Soc Rev 38:1587–1597

    Article  CAS  Google Scholar 

  55. Liang Y, Yu L (2010) A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc Chem Res 43:1227–1236

    Article  CAS  Google Scholar 

  56. Anthony JE, Facchetti A, Heeney M, Marder SR, Zhan X (2010) n-Type organic semiconductors in organic electronics. Adv Mater 22:3876–3892

    Article  CAS  Google Scholar 

  57. Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23:3597–3602

    Article  CAS  Google Scholar 

  58. Pinzón JR, Villalta-Cerdas A, Echegoyen L (2012) Fullerenes, carbon nanotubes, and graphene for molecular electronics. Top Curr Chem 312:127–174

    Article  Google Scholar 

  59. Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267

    Article  CAS  Google Scholar 

  60. Kanbara T, Shibata K, Fujiki S, Kubozono Y, Kashino S, Urisu T, Sakai M, Fujiwara A, Kumashiro R, Tanigaki K (2003) N-channel field effect transistors with fullerene thin films and their application to a logic gate circuit. Chem Phys Lett 379:223–229

    Article  CAS  Google Scholar 

  61. Rikiishi Y, Kubozono Y, Hosokawa T, Shibata K, Haruyama Y, Takabayashi Y, Fujiwara A, Kobayashi S, Mori S, Iwasa Y (2004) Structural and electronic characterization of two isomers of Ce@C82. J Phys Chem B 108:7580–7585

    Article  CAS  Google Scholar 

  62. Nagano T, Kuwahara E, Takayanagi T, Kubozono Y, Fujiwara A (2005) Fabrication and characterization of field-effect transistor device with C 2v isomer of Pr@C82. Chem Phys Lett 409:187–191

    Article  CAS  Google Scholar 

  63. Kobayashi S, Mori S, Iida S, Ando H, Takenobu T, Taguchi Y, Fujiwara A, Taninaka A, Shinohara H, Iwasa Y (2003) Conductivity and field effect transistor of La2@C80 metallofullerene. J Am Chem Soc 125:8116–8117

    Article  CAS  Google Scholar 

  64. Maeda Y, Matsunaga Y, Wakahara T, Takahashi S, Tsuchiya T, Ishitsuka MO, Hasegawa T, Akasaka T, Liu MTH, Kokura K, Horn E, Yoza K, Kato T, Okubo S, Kobayashi K, Nagase S, Yamamoto K (2004) Isolation and characterization of a carbene derivative of La@C82. J Am Chem Soc 126:6858–6859

    Article  CAS  Google Scholar 

  65. Sato S, Seki S, Honsho Y, Wang L, Nikawa H, Luo G, Lu J, Haranaka M, Tsuchiya T, Nagase S, Akasaka T (2011) Semi-metallic single-component crystal of soluble La@C82 derivative with high electron mobility. J Am Chem Soc 133:2766–2771

    Article  CAS  Google Scholar 

  66. Saeki A, Koizumi Y, Aida T, Seki S (2012) Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Acc Chem Res 45:1193–1202

    Article  CAS  Google Scholar 

  67. Seki S, Saeki A, Sakurai T, Sakamaki D (2014) Charge carrier mobility in organic molecular materials probed by electromagnetic waves. Phys Chem Chem Phys 16:11093–11113

    Article  CAS  Google Scholar 

  68. Sato S, Nikawa H, Seki S, Wang L, Luo G, Lu J, Haranaka M, Tsuchiya T, Nagase S, Akasaka T (2012) A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew Chem Int Ed 51:1589–1591

    Article  CAS  Google Scholar 

  69. Sato S, Seki S, Luo G, Suzuki M, Lu J, Nagase S, Akasaka T (2012) Tunable charge-transport properties of I h-C80 endohedral metallofullerenes: investigation of La2@C80, Sc3N@C80, and Sc3C2@C80. J Am Chem Soc 134:11681–11686

    Article  CAS  Google Scholar 

  70. Agraït N, Yeyati AL, van Ruitenbeek JM (2003) Quantum properties of atomic-sized conductors. Phys Rep 377:81–279

    Article  Google Scholar 

  71. Kaneko S, Wang L, Luo G, Lu J, Nagase S, Sato S, Yamada M, Slanina Z, Akasaka T, Kiguchi M (2012) Electron transport through single endohedral Ce@C82 metallofullerenes. Phys Rev B 86:155406

    Article  Google Scholar 

  72. Deak DS, Silly F, Porfyrakis K, Castell MR (2006) Template ordered open-grid arrays of paired endohedral fullerenes. J Am Chem Soc 128:13976–13977

    Article  CAS  Google Scholar 

  73. Zhao S, Zhang J, Dong J, Yuan B, Qiu X, Yang S, Hao J, Zhang H, Yuan H, Xing G, Zhao Y, Sun B (2011) Scanning tunneling microscopy investigation of substrate-dependent adsorption and assembly of metallofullerene Gd@C82 on Cu(111) and Cu(100). J Phys Chem C 115:6265–6268

    Article  CAS  Google Scholar 

  74. Muthukumar K, Strózecha A, Myslivecek J, Dybek A, Dennis TJS, Voigtländer B, Larsson JA (2013) Endohedral fullerene Ce@C82 on Cu(111): orientation, electronic structure, and electron-vibration coupling. J Phys Chem C 117:1656–1662

    Article  CAS  Google Scholar 

  75. Crivillers N, Takano Y, Matsumoto Y, Casado-Montenegro J, Mas-Torrent M, Rovira C, Akasaka T, Veciana J (2013) Electrochemical and magnetic properties of a surface-grafted novel endohedral metallofullerene derivative. Chem Commun 49:8145–8147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Akasaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yamada, M., Sato, S., Takano, Y., Feng, L., Nagase, S., Akasaka, T. (2015). Endohedral Metallofullerenes: From Chemical Reactivity to Material Performance. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_9

Download citation

Publish with us

Policies and ethics